这两题本质是一致的;

一般来说,对于最长(短)化最短(长)的问题我们一般都使用二分答案+判定是否可行

因为这样的问题,我们一旦知道答案,就能知道全局信息

拿poj2455举例,对于二分出的一个答案,我们将不符合的边全部去掉,在做一遍最大流判断是否成立即可

注意这道题有重边,所以用链式前向星比较好(TT,当时我用的数组模拟邻接表表不要太烦)

 type node=record
       po,flow,cost:longint;
     end;
var w,ow:array[..,..] of node;
    cur,pre,numh,h,s,s0:array[..] of longint;
    ans,max,mid,l,r,x,y,z,i,n,m,p:longint; procedure add(x,y,z,f:longint);  //很繁琐的结构,需要检查好久,重边优先选择链式前向星,比较方便
  begin
    inc(s[x]);
    w[x,s[x]].po:=y;
    w[x,s[x]].cost:=z;
    w[x,s[x]].flow:=f;
  end; function maxflow(k:longint):boolean;  //很喜欢写sap,判定
  var j,sum,u,i,t,r,tmp:longint;
  begin
    max:=-;
    fillchar(pre,sizeof(pre),);
    fillchar(cur,sizeof(cur),);
    fillchar(h,sizeof(h),);
    fillchar(numh,sizeof(numh),);   //一定要注意,这句话没有不影响程序结果,但会拖慢程序速度(相当于没用到GAP优化),谨记
    fillchar(s0,sizeof(s0),);
    for i:= to n do
      for j:= to s[i] do
      begin
        if w[i,j].cost<=k then     //根据条件构造新图
        begin
          inc(s0[i]);
          ow[i,s0[i]]:=w[i,j];
        end;
      end;
    numh[]:=n;
    sum:=;
    u:=;
    while h[]<n do
    begin
      if u=n then
      begin
        i:=;
        while i<>n do
        begin
          t:=cur[i];
          if max<ow[i,t].cost then max:=ow[i,t].cost;  //小优化而已,在最大流里面找一条最大的边,实际上答案是这个
          dec(ow[i,t].flow);
          i:=ow[i,t].po;
        end;
        inc(sum);
        if sum=p then exit(true);
        u:=;
      end;
      r:=-;
      for i:= to s0[u] do
        if (ow[u,i].flow>) and (h[u]=h[ow[u,i].po]+) then
        begin
          r:=i;
          break;
        end;       if r<>- then
      begin
        cur[u]:=r;
        pre[ow[u,r].po]:=u;
        u:=ow[u,r].po;
      end
      else begin
        dec(numh[h[u]]);
        if numh[h[u]]= then exit(false);   
        tmp:=n;   //注意这里千万不要顺手打成maxlongint之类
        for i:= to s0[u] do
          if (ow[u,i].flow>) and (tmp>h[ow[u,i].po]) then tmp:=h[ow[u,i].po];
        h[u]:=tmp+;
        inc(numh[h[u]]);
        if u<> then u:=pre[u];
      end;
    end;
    exit(false);
  end; begin
  readln(n,m,p);
  for i:= to m do
  begin
    readln(x,y,z);
    add(x,y,z,);
    add(y,x,z,);
    if z>r then r:=z;
  end;
  l:=;
  while l<=r do
  begin
    mid:=(l+r) shr ;
    if maxflow(mid) then  
    begin
      ans:=max;   //小小的优化,但不是所有二分判定都可以用
      r:=max-;
    end
    else l:=mid+;
  end;
  writeln(ans);
end.

poj2391也是一样的,只不过多了floyd预处理

一般的,对于答案越大,决策就越有可能成功的这类具有单调性的题目,通常使用二分答案

poj2391,poj2455的更多相关文章

  1. Pyhton开源框架(加强版)

    info:Djangourl:https://www.oschina.net/p/djangodetail: Django 是 Python 编程语言驱动的一个开源模型-视图-控制器(MVC)风格的 ...

  2. MPlayer

    名称   mplayer − 电影播放器 mencoder − 电影编解码器 概要   mplayer [选项] [文件|URL|播放列表|−] mplayer [选项] 文件1 [指定选项] [文件 ...

  3. python 爬取腾讯微博并生成词云

    本文以延参法师的腾讯微博为例进行爬取并分析 ,话不多说 直接附上源代码.其中有比较详细的注释. 需要用到的包有 BeautifulSoup WordCloud jieba # coding:utf-8 ...

  4. 面经 cisco

    1. 优先级反转问题及解决方法 (1)什么是优先级反转 简单从字面上来说,就是低优先级的任务先于高优先级的任务执行了,优先级搞反了.那在什么情况下会生这种情况呢? 假设三个任务准备执行,A,B,C,优 ...

  5. linux驱动(续)

    网络通信 --> IO多路复用之select.poll.epoll详解 IO多路复用之select.poll.epoll详解      目前支持I/O多路复用的系统调用有 select,psel ...

  6. HttpServletRequest对象(一)

    javaweb学习总结(十)——HttpServletRequest对象(一) 一.HttpServletRequest介绍 HttpServletRequest对象代表客户端的请求,当客户端通过HT ...

  7. POJ2455 Secret Milking Machine【二分,最大流】

    题目大意:N个点P条边,令存在T条从1到N的路径,求路径上的边权的最大值最小为多少 思路:做了好多二分+最大流的题了,思路很好出 二分出最大边权后建图,跑dinic 问题是....这题是卡常数的好题! ...

  8. 【poj2455】 Secret Milking Machine

    http://poj.org/problem?id=2455 (题目链接) 题意 给出一张n个点,p条边的无向图,需要从1号节点走到n号节点一共T次,每条边只能经过1次,问T次经过的最大的边最小是多少 ...

  9. poj2391 Ombrophobic Bovines 拆点+二分法+最大流

    /** 题目:poj2391 Ombrophobic Bovines 链接:http://poj.org/problem?id=2391 题意:有n块区域,第i块区域有ai头奶牛,以及一个可以容纳bi ...

随机推荐

  1. laravel项目拉取下来安装,node.js库安装

    1.拉取项目 2.切换分支 圈圈里面是版本 composer 安装laravel组件其他库 安装node.js安装包  npm set registry=https://registry.npm.ta ...

  2. 【Delphi】窗体阴影

    procedure TForm1.FormCreate(Sender: TObject); begin SetClassLong(Handle, GCL_STYLE, GetClassLong(Han ...

  3. hosts文件的作用 whois查询域名信息

      Whois查询域名信息 在操作系统中的路径:Window98—在Windows目录下Windows 2000/XP—在C:\WINDOWS\system32\drivers\etc目录下 内容:包 ...

  4. DB2中循环日期跑数据

    1.数据库版本: 2.具体实现方式: ),)) /*************************************************************************** ...

  5. jsp日期控件My97DatePicker的使用

    My97DatePicker是一款非常灵活好用的日期控件.使用非常简单. 1.下载My97DatePicker组件包 2.将My97DatePicker包放在项目WebContent目录下 3.在页面 ...

  6. 动态LINQ构建(实现等于不等于大于小于,like以及IN)

    首先感谢园子里的“红烧狮子头”,他的工作是本文的基础,引文如下http://www.cnblogs.com/daviddai/archive/2013/03/09/2952087.html,本版本实现 ...

  7. 微信公众号jssdk使用的惨痛经历

    最近一直在做微信公众号开发,遇到个DT的问题: 大家都知道使用jssdk的时候开发人员必须在后台按照官方文档给定的规则生成签名,我前前个月就写好了这个测试demo页面,而且完全正常能用,像分享等这些功 ...

  8. 文件/图片,批量上传【神器】--WebUploader

    <system.web> <httpRuntime maxRequestLength="102400" executionTimeout="720&qu ...

  9. Linux计算机进程地址空间与内核装载ELF

    本文基于Linux™系统对进程创建与加载进行分析,文中实现了Linux库函数fork.exec,剖析内核态执行过程,并进一步展示进程创建过程中进程控制块字段变化信息及ELF文件加载过程. 一.初识Li ...

  10. GPS导航仪常见术语解释

    摘自百度百科: 坐标(coordinate) 有2维.3维两种坐标表示,当GPS能够收到4颗及以上卫星的信号时,它能计算出本地的3维坐标:经度.纬度.高度,若只能收到3颗卫星的信号,它只能计算出2维坐 ...