题目:http://poj.org/problem?id=1039

题意:有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从左边入口处的(x1,y1),(x1,y1-1)之间射入,向四面八方传播,求解光线最远能传播到哪里(取x坐标)或者是否能穿透整个管道.

思路:最优的是 光线过一个上顶点,一个下顶点。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<iomanip>
using namespace std;
const double eps=1e-;
const int INF=<<;
int n; struct point
{
double x,y;
}up[],down[]; int dblcmp(double x)
{
if(x<-eps) return -;//一定要注意精度问题,不然样例都过不了
if(x>eps) return ;
return ; //在这里把接近0的数值都看成了0,实际这些数值就是0
} double det(double x1,double y1,double x2,double y2)// 向量坐标点的叉乘
{
return x1*y2-x2*y1;
}
double cross(point a,point b,point c)//ab和ac向量的叉乘
{
return det(b.x-a.x,b.y-a.y,c.x-a.x,c.y-a.y);
} double getx(point a,point b,point c,point d)//求ab和cd组成的直线交点的横坐标。
{
double b1,b2,k1,k2;
k1=(b.y-a.y)/(b.x-a.x);
k2=(d.y-c.y)/(d.x-c.x);
b1=a.y-k1*a.x;
b2=c.y-k2*c.x;
return (b2-b1)/(k1-k2);
}
void solve()
{
int i,j,k;
double ans=-INF,cnt;
for(i=; i<n; i++)
{
for(j=; j<n; j++)
{
if(i==j) continue; //同一个横坐标的跳过
for(k=; k<n; k++)
{
if(dblcmp(cross(up[i],down[j],up[k]))*dblcmp(cross(up[i],down[j],down[k]))>)
break;//叉乘大于0说明 这条直线在两个点的同一侧,从叉乘的定义可以看出|a||b|sin&;
}
if(k<max(i,j)) continue; //如果这样的话 说明光线不存在。。。
cnt=getx(up[i],down[j],up[k],up[k-]);//找上顶点线的交点
if(cnt>ans) ans=cnt;
cnt=getx(up[i],down[j],down[k],down[k-]);//找下顶点线的交点
if(cnt>ans) ans=cnt;
if(k==n)
{
cout<<"Through all the pipe."<<endl;
return;
}
}
}
cout<<fixed<<setprecision()<<ans<<endl;
}
int main()
{
int i;
while(~scanf("%d",&n)&&n)
{
for(i=; i<n; i++)
{
cin>>up[i].x; cin>>up[i].y;
down[i].x=up[i].x; down[i].y=up[i].y-1.0;
}
solve();
}
return ;
}

poj 1039 Pipe(叉乘。。。)的更多相关文章

  1. poj 1039 Pipe (Geometry)

    1039 -- Pipe 理解错题意一个晚上._(:з」∠)_ 题意很容易看懂,就是要求你求出从外面射进一根管子的射线,最远可以射到哪里. 正解的做法是,选择上点和下点各一个,然后对于每个折点位置竖直 ...

  2. POJ - 1039 Pipe(计算几何)

    http://poj.org/problem?id=1039 题意 有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从左边入 ...

  3. POJ 1039 Pipe【经典线段与直线相交】

    链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. 简单几何(直线与线段相交) POJ 1039 Pipe

    题目传送门 题意:一根管道,有光源从入口发射,问光源最远到达的地方. 分析:黑书上的例题,解法是枚举任意的一个上顶点和一个下顶点(优化后),组成直线,如果直线与所有竖直线段有交点,则表示能穿过管道. ...

  5. POJ 1039 Pipe(直线和线段相交判断,求交点)

    Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8280   Accepted: 2483 Description ...

  6. POJ 1039 Pipe

    题意:一根管子,中间有一些拐点,给出拐点的上坐标,下坐标为上坐标的纵坐标减1,管子不能透过光线也不能折射光线,问光线能射到最远的点的横坐标. 解法:光线射到最远处的时候一定最少经过两个拐点,枚举每两个 ...

  7. poj 1039 Pipe(几何基础)

    Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9932   Accepted: 3045 Description ...

  8. POJ 1039 Pipe 枚举线段相交

    Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9493   Accepted: 2877 Description ...

  9. POJ 1039 Pipe | 线段相交

    题目: 给一个管子,有很多转弯处,问从管口的射线射进去最长能射到多远 题解: 根据黑书,可以证明的是这条光线一定经过了一个上顶点和下顶点 所以我们枚举每对上下顶点就可以了 #include<cs ...

随机推荐

  1. 模仿 ios 分段单选

    http://blog.csdn.net/qduningning/article/details/37935227 res/drawable/seg_left.xml <?xml version ...

  2. Popup window

    function createLoadingDialog() { $("#loadingDialog").dialog({ autoOpen: false, closeOnEsca ...

  3. Asp.Net Web API VS Asp.Net MVC

    http://www.dotnet-tricks.com/Tutorial/webapi/Y95G050413-Difference-between-ASP.NET-MVC-and-ASP.NET-W ...

  4. spring-cloud-turbine

    turbine主要用于聚合hystrix的监控数据 依赖pom <dependencyManagement> <dependencies> <dependency> ...

  5. Android Google购买PHP服务器端验证(订阅购买和一次性购买)

    一.订阅购买验证 android端采用google service account进行校验 1.打开https://cloud.google.com/console创建一个project: 2.打开p ...

  6. sublime 编辑完自动生成tmp的备份

    是安装phptool之后造成的,卸载即可 http://bbs.csdn.net/topics/390826865

  7. 在制作joomla模板过程中遇到的问题

    '''问题1.'''在jjc首页中两个通知公告和基建首页的两个模块中,当我点击查看文章标题是,而通知公告和最新动态页一直都还显示,发现文章一直在网站的下部,而不显示在它应该显示的main_rigth模 ...

  8. Cocos2d-x第一个坑,NDK 编译环境

    这些天搭建windows cocos2d-x的环境,基本上崩溃到死.目前好转.终于可以编译通过: 生成模板工程:在cmd下进入cocos2d-x的主目录,D:\Android\cocos2d-x-2. ...

  9. Linux下vsftp服务器—上传、下载

    一.  FTP 说明 Linux下常用的FTP Server是vsftp(Very Security File Transfer Protocol),及profpt(Professtional ftp ...

  10. 制作输入框(Input)

    怎样判断是否应当使用输入框 输入框,就是用户可以自由输入文本的地方.当需要判断是否需要使用输入框时,可以遵循一条原则:凡是需要用户自主输入文本的地方,几乎都必须使用输入框. 输入框的常见用法:输入登录 ...