SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串
然后这是09年论文《后缀数组——处理字符串的有力工具》中有介绍
公式如下:

原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <algorithm>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <utility>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 1e3+;
int cmp(int *r,int a,int b,int l){
return (r[a]==r[b]) && (r[a+l]==r[b+l]);
}
// ???????????????,
// ????????,??????,r[n]=0(??????????)
int wa[N],wb[N],ww[N],wv[N];
int ran[N],height[N];
void DA(int *r,int *sa,int n,int m){ //??N????N??1????????????????CMP???
int i,j,p,*x=wa,*y=wb,*t;
for(i=;i<m;i++) ww[i]=;
for(i=;i<n;i++) ww[x[i]=r[i]]++;
for(i=;i<m;i++) ww[i]+=ww[i-];
for(i=n-;i>=;i--) sa[--ww[x[i]]]=i; //??????1
for(j=,p=;p<n;j*=,m=p) //?????????J?SA???2*J?SA
{
for(p=,i=n-j;i<n;i++) y[p++]=i; // ????????????
for(i=;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j; //????J??????????
for(i=;i<n;i++) wv[i]=x[y[i]];
for(i=;i<m;i++) ww[i]=;
for(i=;i<n;i++) ww[wv[i]]++;
for(i=;i<m;i++) ww[i]+=ww[i-];
for(i=n-;i>=;i--) sa[--ww[wv[i]]]=y[i]; //??????
for(t=x,x=y,y=t,p=,x[sa[]]=,i=;i<n;i++)
x[sa[i]]=cmp(y,sa[i-],sa[i],j)?p-:p++; //??????x[],???????
}
}
void calheight(int *r,int *sa,int n){ // ??N?????
int i,j,k=; // height[]?????? 1-N, ??0????????
for(i=;i<=n;i++) ran[sa[i]]=i; // ??SA?RANK
for(i=;i<n; height[ran[i++]] = k ) // ???h[i] = height[ rank[i] ]
for(k?k--:,j=sa[ran[i]-]; r[i+k]==r[j+k]; k++); //?? h[i] >= h[i-1]-1 ?????height??
}
char s[N];
int sa[N],n,r[N],T;
int main(){
scanf("%d",&T);
while(T--){
scanf("%s",s);
n=strlen(s);
for(int i=;i<n;++i)r[i]=(int)s[i];
r[n]=;
DA(r,sa,n+,);
calheight(r,sa,n);
int ans = ;
for(int i=;i<=n;++i)
ans+=n-sa[i]-height[i];
printf("%d\n",ans);
}
return ;
}
SPOJ DISUBSTR Distinct Substrings 后缀数组的更多相关文章
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- spoj 694. Distinct Substrings 后缀数组求不同子串的个数
题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- 【SPOJ – SUBST1】New Distinct Substrings 后缀数组
New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...
- SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )
题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...
- spoj Distinct Substrings 后缀数组
给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...
- ●SPOJ 8222 NSUBSTR - Substrings(后缀数组)
题链: http://www.spoj.com/problems/NSUBSTR/ 题解: 同届红太阳 --WSY给出的后缀数组解法!!! 首先用倍增算法求出 sa[i],rak[i],hei[i]然 ...
- [spoj694&spoj705]New Distinct Substrings(后缀数组)
题意:求字符串中不同子串的个数. 解题关键:每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数. 1.总数减去height数组的和即可. 注意这里height中为什么不需 ...
- 【SPOJ】Distinct Substrings/New Distinct Substrings(后缀数组)
[SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题 ...
随机推荐
- NET权限系统开源项目
http://www.cnblogs.com/yubaolee/p/OpenAuth.html http://www.cnblogs.com/guozili/p/3496265.html Sereni ...
- linux网络配置、环境变量以及JDK安装(CentOS 6.5)
由于需要搭建hadoop平台,但是苦于没有现成可用的linux服务器,只好自己下载了CentOS 6.5从头装起,安装过程中遇到了很多问题,比如网络配置.时钟同步.环境变量配置.以及各种服务的启停,还 ...
- HTML5入门九---Canvas画布
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- NET Remoting 示例
.NET Remoting是.NET平台上允许存在于不同应用程序域中的对象相互知晓对方并进行通讯的基础设施.调用对象被称为客户端,而被调用对象则被称为服务器或者服务器对象.简而言之,它就是.NET平台 ...
- List应用举例
1.集合的嵌套遍历 学生类: package listexercise; /** * Created by gao on 15-12-9. */ public class Student { priv ...
- Java API —— Random类
1.Random类概述 此类用于产生随机数 如果用相同的种子创建两个 Random 实例,则对每个实例进行相同的方法调用序列,它们将生成并返回相同的数字序列. 2.构造 ...
- android4.4内核移植
01 init/目录下Kconfig修改: 956行添加: config PANIC_TIMEOUT int "Default panic timeout" help Set de ...
- 转 命令行下玩VC
说明:(1)转载请注明出处:http://www.cnblogs.com/opangle/p/4298155.html (2)以下以VS2013为例,并假设VC安装路径为%VC_INSTALL_PAT ...
- 定制IE浏览器的尖兵利器 - BHO
IE浏览器是当前使用人数最广的浏览器, 本文主要来讲述如何来打造我们自己特色的浏览器, 自定义工具栏按钮, 自定义网页的右击菜单, BHO技术与IE浏览器. 本文写作过程中参考不少网络上的相关资料, ...
- UVa 1262 (第k字典序) Password
题意: 给出两个6行5列的字母矩阵,一个密码满足:密码的第i个字母在两个字母矩阵的第i列均出现. 然后找出字典序为k的密码,如果不存在输出NO 分析: 我们先统计分别在每一列均在两个矩阵出现的字母,然 ...