Polygon
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4456   Accepted: 1856

Description

Polygon is a game for one player that starts on a polygon with N vertices, like the one in Figure 1, where N=4. Each vertex is labelled with an integer and each edge is labelled with either the symbol + (addition) or the symbol * (product). The edges are numbered from 1 to N.


On the first move, one of the edges is removed. Subsequent moves involve the following steps:

�pick an edge E and the two vertices V1 and V2 that are linked by E; and

�replace them by a new vertex, labelled with the result of performing the operation indicated in E on the labels of V1 and V2.

The game ends when there are no more edges, and its score is the label of the single vertex remaining.

Consider the polygon of Figure 1. The player started by removing
edge 3. After that, the player picked edge 1, then edge 4, and, finally,
edge 2. The score is 0.



Write a program that, given a polygon, computes the highest possible
score and lists all the edges that, if removed on the first move, can
lead to a game with that score.

Input

Your
program is to read from standard input. The input describes a polygon
with N vertices. It contains two lines. On the first line is the number
N. The second line contains the labels of edges 1, ..., N, interleaved
with the vertices' labels (first that of the vertex between edges 1 and
2, then that of the vertex between edges 2 and 3, and so on, until that
of the vertex between edges N and 1), all separated by one space. An
edge label is either the letter t (representing +) or the letter x
(representing *).

3 <= N <= 50

For any sequence of moves, vertex labels are in the range [-32768,32767].

Output

Your
program is to write to standard output. On the first line your program
must write the highest score one can get for the input polygon. On the
second line it must write the list of all edges that, if removed on the
first move, can lead to a game with that score. Edges must be written in
increasing order, separated by one space.

Sample Input

4
t -7 t 4 x 2 x 5

Sample Output

33
1 2 题目的意思就是给n个数,n个两两数之间的运算符(只有+和*)问首先去掉哪个运算符号之后可以让其他的数按照一定的方法计算后结果最大。
其实结题思路还是比较好想到的,枚举(枚举去掉的符号)+DP(记忆化搜索)就可以做到。但这里有一个天坑,就是负负得正,所以不能单一的枚举最大值,而要同时DP最小值。
计算最大值:
加法 max(i,j) = max(i,k)+max(k,j);
乘法 max(i,j) = MAX(max(i,k)*max(k,j),max(i,k)*min(k,j),max(k,j)*min(i,k),min(i,k)*min(k,j));(i=<k<=j)
计算最小值:
   加法  min(i,j) = min(i,k)+min(k,j);
乘法 min(i,j) = MIN(max(i,k)*max(k,j),min(i,k)*min(k,j),max(k,j)*min(i,k),min(i,k)*min(k,j));(i=<k<=j)
见代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <stack>
#include <set>
#include <queue>
#define MAX(a,b) (a) > (b)? (a):(b)
#define MIN(a,b) (a) < (b)? (a):(b)
#define mem(a) memset(a,0,sizeof(a))
#define INF 1000000007
#define MAXN 20005
using namespace std; bool op[];
int num[],dp_max[], dp_min[], n;
bool vis_max[],vis_min[];
int DP_MIN(int i,int j);
int DP_MAX(int i,int j); int DP_MAX(int i,int j)//DP求区间最大值
{
int u = i*+j;
if(vis_max[u])return dp_max[u];
vis_max[u]=;
if(j-i <= )
{
if(j==i)return dp_max[u]=num[i-];
if(!op[i])return dp_max[u]=num[i-]+num[i];
else return dp_max[u]=num[i-]*num[i];
}
dp_max[u] = -INF;
for(int k=i;k<j;k++)
{
int l=DP_MIN(i,k);
int r=DP_MIN(k+,j);
int ll=DP_MAX(i,k);
int rr=DP_MAX(k+,j);
if(!op[k])dp_max[u] = MAX(dp_max[u], ll+rr);
else dp_max[u] = MAX(dp_max[u], MAX(ll*rr,MAX(l*r,MAX(l*rr,r*ll))));
}
return dp_max[u];
} int DP_MIN(int i,int j)//DP求区间最小值
{
int u = i*+j;
if(vis_min[u])return dp_min[u];
vis_min[u]=;
if(j-i <= )
{
if(j==i)return dp_min[u]=num[i-];
if(!op[i])return dp_min[u]=num[i-]+num[i];
else return dp_min[u]=num[i-]*num[i];
}
dp_min[u] = INF;
for(int k=i;k<j;k++)
{
int l=DP_MIN(i,k);
int r=DP_MIN(k+,j);
int ll=DP_MAX(i,k);
int rr=DP_MAX(k+,j);
if(!op[k])dp_min[u] = MIN(dp_min[u], l+r);
else dp_min[u] = MIN(dp_min[u], MIN(ll*rr,MIN(l*r,MIN(l*rr,r*ll))));
}
return dp_min[u];
} int main()
{
while(~scanf("%d%*c",&n))
{
mem(op);mem(dp_max);
mem(num);mem(vis_min);
mem(vis_max);
int max=-INF,i;
char ch;
for(i=;i<n;i++)
{
scanf("%c %d%*c",&ch,&num[i]);
op[i]=op[i+n]=(ch=='x');
num[i+n]=num[i];
}
for(i=;i<n;i++)
{
max=MAX(max,DP_MAX(i+,i+n));
}
printf("%d\n",max);
int ok=;
for(i=;i<n;i++)
{
if(DP_MAX(i+,i+n) == max)
{
if(ok){printf("%d",i+);ok=;}
else printf(" %d",i+);
}
}
printf("\n");
}
return ;
}

												

POJ1179Polygon(DP)的更多相关文章

  1. POJ1179Polygon(区间dp)

    啊~~ 被dp摁在地上摩擦的人 今天做了一道区间dp的题(POJ1179Polygon) 题目: Polygon Time Limit: 1000MS   Memory Limit: 10000K T ...

  2. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  3. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  4. AEAI DP V3.7.0 发布,开源综合应用开发平台

    1  升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...

  5. AEAI DP V3.6.0 升级说明,开源综合应用开发平台

    AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...

  6. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  7. [斜率优化DP]【学习笔记】【更新中】

    参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  9. px、dp和sp,这些单位有什么区别?

    DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...

随机推荐

  1. bzoj3272 3638

    好题,这道题可以用线段树来快速模拟费用流寻找最长增广路 这样修改怎么做也很显然了 type node=record s,lx,rx,mx,lp,rp,pb,pe:longint; end; ..*,. ...

  2. UVa 11389 (贪心) The Bus Driver Problem

    题意: 有司机,下午路线,晚上路线各n个.给每个司机恰好分配一个下午路线和晚上路线. 给出行驶每条路线的时间,如果司机开车时间超过d,则要付加班费d×r. 问如何分配路线才能使加班费最少. 分析: 感 ...

  3. ASP.NET MVC实现多个按钮提交事件

    有时候会遇到这种情况:在一个表单上需要多个按钮来完成不同的功能,比如一个简单的审批功能. 如果是用webform那不需要讨论,但asp.net mvc中一个表单只能提交到一个Action处理,相对比较 ...

  4. 待实践二:MVC3下的3种验证 (1)前台 jquery validate验证 (2)MVC实体验证 (3)EF生成的/自己手写的 自定义实体校验(伙伴类+元素据共享)

    MVC3下的3种验证 (1):前台Jquery Validate脚本验证 引入脚本 <script src="../js/jquery.js" type="text ...

  5. hdu 4619 Warm up 2(并查集)

    借用题解上的话,就是乱搞题.. 题意理解错了,其实是坐标系画错了,人家个坐标系,我给当矩阵画,真好反了.对于题目描述和数据不符的问题,果断相信数据了(这是有前车之鉴的hdu 4612 Warm up, ...

  6. POJ 3084 Panic Room (最小割建模)

    [题意]理解了半天--大意就是,有一些房间,初始时某些房间之间有一些门,并且这些门是打开的,也就是可以来回走动的,但是这些门是确切属于某个房间的,也就是说如果要锁门,则只有在那个房间里才能锁. 现在一 ...

  7. IOS cocos2d笔记1

    结点添加.删除.获取1.结点:CCNode * childNode = [CCNode node]; 2.加入结点[myNode addChild:childNode z:0 tag:123];//z ...

  8. webapp调试工具weinre的使用

    在设计师与前端开发人员的努力下,一个WebApp出炉了,可是测试人员说了一堆的问题:某某机型下页面表现不一致,某某系统下页面如何如何,某某 系统浏览器下页面怎么怎么滴.看着满满的测试汇总文档,我们曾经 ...

  9. apache开源项目 -- VXQuery

    Apache VXQuery 是一个兼容标准的 XML 查询处理器的实现.主要适合非常大量的 XML 数据处理. 参考: http://www.apache.org/

  10. Oracle DBA 的常用Unix参考手册(一)

    作为一名Oracle DBA,在所难免要接触Unix,但是Unix本身又是极其复杂的,想要深刻掌握同样很不容易.那么到底我们该怎么入手呢?Donald K Burleson 的<Unix for ...