Rikka with Sequence

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5828

Description


As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:
Yuta has an array A with n numbers. Then he makes m operations on it.
There are three type of operations:
1 l r x : For each i in [l,r], change A[i] to A[i]+x
2 l r : For each i in [l,r], change A[i] to
3 l r : Yuta wants Rikka to sum up A[i] for all i in [l,r]
It is too difficult for Rikka. Can you help her?

Input


The first line contains a number t(11000.
For each testcase, the first line contains two numbers n,m(1

Output


For each operation of type 3, print a lines contains one number -- the answer of the query.

Sample Input


1
5 5
1 2 3 4 5
1 3 5 2
2 1 4
3 2 4
2 3 5
3 1 5

Sample Output


5
6

Source


2016 Multi-University Training Contest 8


##题意:

对一个数组进行若干操作:
1. 将区间内的值都加x.
2. 将区间内的值都开平方.
3. 求区间内数的和.


##题解:

容易想到用线段树来维护,关键是如何处理操作二. 直接对每个数开平方肯定会超时.
考虑到开平方操作的衰减速度很快,一个数最多经过6次开平方操作就会到1.
那么随着操作的进行,区间内的数会趋于相同,恰好利用这个点来作剪枝.
对于树中的每个结点维护一个equal, 表示当前结点的子节点是否相等. (若相等就等于子节点的值,否则为-1).
当更新到某区间时,若区间内的值都相同,则只更新到这里即可,下面的结点利用pushdown来更新.

赛后数据被加强了,上述思路在HDU上已经AC不了了. sad....


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 101000
#define mod 100000007
#define inf 0x3f3f3f3f
#define mid(a,b) ((a+b)>>1)
#define IN freopen("in.txt","r",stdin);
using namespace std;

int n;

LL num[maxn];

struct Tree

{

int left,right;

LL lazy,sum,equl;

}tree[maxn<<2];

void build(int i,int left,int right)

{

tree[i].left=left;

tree[i].right=right;

tree[i].lazy=0;

if(left==right){
tree[i].sum = num[left];
tree[i].equl = num[left];
return ;
} int mid=mid(left,right); build(i<<1,left,mid);
build(i<<1|1,mid+1,right); tree[i].sum = tree[i<<1].sum + tree[i<<1|1].sum;
tree[i].equl = tree[i<<1].equl==tree[i<<1|1].equl ? tree[i<<1].equl : -1;

}

void pushdown(int i)

{

if(tree[i].equl != -1) {

tree[i<<1].equl = tree[i].equl;

tree[i<<1|1].equl = tree[i].equl;

tree[i<<1].sum = (tree[i<<1].right-tree[i<<1].left+1)tree[i].equl;

tree[i<<1|1].sum = (tree[i<<1|1].right-tree[i<<1|1].left+1)
tree[i].equl;

tree[i].lazy = 0;

tree[i<<1].lazy = 0;

tree[i<<1|1].lazy = 0;

}

if(tree[i].lazy) {

tree[i<<1].lazy += tree[i].lazy;

tree[i<<1|1].lazy += tree[i].lazy;

tree[i<<1].sum += (tree[i<<1].right-tree[i<<1].left+1)tree[i].lazy;

tree[i<<1|1].sum += (tree[i<<1|1].right-tree[i<<1|1].left+1)
tree[i].lazy;

if(tree[i<<1].equl != -1) {

tree[i<<1].equl += tree[i].lazy;

tree[i<<1].lazy = 0;

}

if(tree[i<<1|1].equl != -1) {

tree[i<<1|1].equl += tree[i].lazy;

tree[i<<1|1].lazy = 0;

}

tree[i].lazy = 0;

}

}

void update(int i,int left,int right,LL d)

{

if(tree[i].leftleft&&tree[i].rightright)

{

tree[i].sum += (right-left+1)*d;

if(tree[i].equl == -1) tree[i].lazy += d;

else tree[i].equl += d;

return ;

}

pushdown(i);

int mid=mid(tree[i].left,tree[i].right);

if(right<=mid) update(i<<1,left,right,d);
else if(left>mid) update(i<<1|1,left,right,d);
else {
update(i<<1,left,mid,d);
update(i<<1|1,mid+1,right,d);
} tree[i].sum = tree[i<<1].sum + tree[i<<1|1].sum;
tree[i].equl = tree[i<<1].equl==tree[i<<1|1].equl ? tree[i<<1].equl : -1;

}

void update_sqrt(int i,int left,int right)

{

if(tree[i].leftleft&&tree[i].rightright && tree[i].equl!=-1)

{

tree[i].equl = (LL)sqrt(tree[i].equl);

tree[i].sum = tree[i].equl * (tree[i].right-tree[i].left+1);

tree[i].lazy = 0;

return ;

}

pushdown(i);

int mid=mid(tree[i].left,tree[i].right);

if(right<=mid) update_sqrt(i<<1,left,right);
else if(left>mid) update_sqrt(i<<1|1,left,right);
else {
update_sqrt(i<<1,left,mid);
update_sqrt(i<<1|1,mid+1,right);
} tree[i].sum = tree[i<<1].sum + tree[i<<1|1].sum;
tree[i].equl = tree[i<<1].equl==tree[i<<1|1].equl ? tree[i<<1].equl : -1;

}

LL query(int i,int left,int right)

{

if(tree[i].leftleft&&tree[i].rightright)

return tree[i].sum;

pushdown(i);

int mid=mid(tree[i].left,tree[i].right);

if(right<=mid) return query(i<<1,left,right);
else if(left>mid) return query(i<<1|1,left,right);
else return query(i<<1,left,mid)+query(i<<1|1,mid+1,right);

}

int main(int argc, char const *argv[])

{

//IN;

int t; cin >> t;
while(t--)
{
int m;
scanf("%d %d", &n,&m);
for(int i=1; i<=n; i++)
scanf("%lld", &num[i]);
build(1, 1, n); while(m--) {
int op, l, r;
scanf("%d %d %d", &op,&l,&r);
if(op == 1) {
LL x; scanf("%lld", &x);
update(1, l, r, x);
}
else if(op == 2) {
update_sqrt(1, l, r);
}
else if(op == 3) {
printf("%lld\n", query(1, l, r));
}
}
} return 0;

}

HDU 5828 Rikka with Sequence (线段树)的更多相关文章

  1. hdu 5828 Rikka with Sequence 线段树

    Rikka with Sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...

  2. HDU 5828 Rikka with Sequence (线段树+剪枝优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5828 给你n个数,三种操作.操作1是将l到r之间的数都加上x:操作2是将l到r之间的数都开方:操作3是 ...

  3. HDU 5828 Rikka with Sequence(线段树区间加开根求和)

    Problem DescriptionAs we know, Rikka is poor at math. Yuta is worrying about this situation, so he g ...

  4. 2016暑假多校联合---Rikka with Sequence (线段树)

    2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...

  5. 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence

    // 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence // 题意:三种操作,1增加值,2开根,3求和 // 思路:这题与HDU 4027 和HDU 5634 ...

  6. HDU 5828 Rikka with Sequence(线段树 开根号)

    Rikka with Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  7. hdu 4893 Wow! Such Sequence!(线段树)

    题目链接:hdu 4983 Wow! Such Sequence! 题目大意:就是三种操作 1 k d, 改动k的为值添加d 2 l r, 查询l到r的区间和 3 l r. 间l到r区间上的所以数变成 ...

  8. HDU 6089 Rikka with Terrorist (线段树)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6089 题解 这波强行维护搞得我很懵逼... 扫描线,只考虑每个点能走到左上方(不包括正上方,但包括正左 ...

  9. HDU 5634 Rikka with Phi 线段树

    题意:bc round 73 div1 D 中文题面 分析:注意到10^7之内的数最多phi O(log(n))次就会变成1, 因此可以考虑把一段相同的不为1的数缩成一个点,用平衡树来维护. 每次求p ...

随机推荐

  1. sql partition by 的使用

    select a.bs_sn, a.bs_bd_no, a.bs_bk_code, a.bs_kind_no, a.bs_flag, b.det_flag, c.bp_in_no, c.bp_name ...

  2. iOS开发:应用生命周期

    iOS应用通过委托对象AppDelegate类在应用周期的不同阶段会回调不同的方法,应用周期分为以下五种状态: Not Running(非运行状态).应用没有运行或被系统终止.   Inactive ...

  3. UVa 11105 (筛法) Semi-prime H-numbers

    题意: 你现在来到了一个所有的数都模4余1的世界,也就是除了这种数没有其他的数了. 然而素数的定义依然没变,如果一个数不能写成两个非1数字的乘积,则它是素数. 比如,在这里5就变成了最小的素数. 两个 ...

  4. asp.net获取当前页面源码并生成静态页面

    StringWriter stringWriter = new StringWriter(); HtmlTextWriter htmlWriter = new HtmlTextWriter(strin ...

  5. 【转】JAVA之网络编程

    转自:火之光 网络编程 网络编程对于很多的初学者来说,都是很向往的一种编程技能,但是很多的初学者却因为很长一段时间无法进入网络编程的大门而放弃了对于该部分技术的学习. 在 学习网络编程以前,很多初学者 ...

  6. LeetCode: pow

    Title: https://leetcode.com/problems/powx-n/ 思路:二分.使用递归或者非递归.非递归有点难理解.pow(0,0)=1 递归的方法是将n为负数的用除法解决.有 ...

  7. cocoapods 终极方案

    最近各种错误, 全部刷新 再说 sudo gem install -n /usr/local/bin cocoapods $ sudo gem update --system // 先更新gem $ ...

  8. 【打表】HDOJ-2089-不要62

    [题目链接:HDOJ-2089] 多组测试数据,所以可以先算出符合条件的所有数保存数组中,输入时则直接遍历数组. #include<iostream> #include<cstrin ...

  9. Oracle 手工清除回滚段的几种方法

    关于回滚段的问题,之前也小整理过一个,参考: Current online Redo 和 Undo 损坏的处理方法 http://blog.csdn.net/tianlesoftware/articl ...

  10. 新闻类App使用的组件

    UI SlidingMenu:com.jeremyfeinstein.slidingmenu:滑动菜单 ActionBarSherlock:com.actionbarsherlock:Action B ...