2751: [HAOI2012]容易题(easy)

题目连接:

http://www.lydsy.com/JudgeOnline/problem.php?id=2751

Description

为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:

有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!

Input

第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。

接下来k行,每行两个正整数x,y表示A[x]的值不能是y。

Output

一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。

Sample Input

3 4 5

1 1

1 1

2 2

2 3

4 3

Sample Output

90

样例解释

A[1]不能取1

A[2]不能去2、3

A[4]不能取3

所以可能的数列有以下12种

数列 积

2 1 1 1 2

2 1 1 2 4

2 1 2 1 4

2 1 2 2 8

2 1 3 1 6

2 1 3 2 12

3 1 1 1 3

3 1 1 2 6

3 1 2 1 6

3 1 2 2 12

3 1 3 1 9

3 1 3 2 18

Hint

题意

题解:

答案显然是每个位置的数可选的数的和的累积(即PI(sigma(j)))

然后我们可以暴力处理出有限制的地方的乘积

然后再快速幂搞定剩下没有限制的乘积就好了

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+8;
const int mod = 1e9+7;
long long pow_mod(long long a,long long n,long long mod)
{
long long ret = 1;
long long temp = a%mod;
while(n)
{
if(n & 1)ret = ret*temp%mod;
temp = temp*temp%mod;
n >>= 1;
}
return ret;
}
long long n,m;
int k;
vector<pair<int,int> >p;
map<int,long long> H;
int main()
{
scanf("%lld%lld%d",&n,&m,&k);
for(int i=0;i<k;i++)
{
int x,y;
scanf("%d%d",&x,&y);
p.push_back(make_pair(x,y));
}
sort(p.begin(),p.end());
p.erase(unique(p.begin(),p.end()),p.end());
for(int i=0;i<p.size();i++)
{
H[p[i].first]=(H[p[i].first]+p[i].second)%mod;
}
map<int,long long>::iterator it;
int tot = 0;
long long ans = 1;
long long temp = (1LL+n)*n/2LL%mod;
for(it=H.begin();it!=H.end();it++)
{
tot++;
ans = ans*(temp-it->second)%mod;
if(ans<0)ans+=mod;
}
ans = ans * pow_mod(temp,m-tot,mod)%mod;
if(ans<0)ans+=mod;
printf("%lld\n",ans);
}

BZOJ 2751: [HAOI2012]容易题(easy) 数学的更多相关文章

  1. BZOJ 2751: [HAOI2012]容易题(easy)( )

    有限制的最多就K个, 所以我们处理一下这K个就行了. 其他可以任选, 贡献都是∑i (1≤i≤N), 用快速幂. ------------------------------------------- ...

  2. bzoj 2751 [HAOI2012]容易题(easy)(数学)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2751 [题意] m个位置,已知每个位置的可能取值,问所有可能情况的每个位置的乘积的和. ...

  3. 2751: [HAOI2012]容易题(easy)

    2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1087  Solved: 477[Submit][ ...

  4. BZOJ2751: [HAOI2012]容易题(easy)

    2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 872  Solved: 377[Submit][S ...

  5. 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂

    [bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...

  6. 【bzoj2751】[HAOI2012]容易题(easy) 数论,简单题

    Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪 ...

  7. P2220 [HAOI2012]容易题[小学数学]

    题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定 ...

  8. 2018.11.07 bzoj2751: [HAOI2012]容易题(easy)(组合数学)

    传送门 组合数学一眼题. 感觉一直做这种题智商会降低. 利用组合数学的分步计数原理. 只用关心每个数不被限制的取值的总和然后乘起来就可以了. 对于大部分数都不会被限制,总和都是n(n+1)2\frac ...

  9. BZOJ 2751 容易题(easy) 快速幂+快速乘

    2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...

随机推荐

  1. Enter回车切换输入焦点方法兼容各大浏览器

    做项目时,客户要求能够用enter回车直接切换输入(焦点),当最后一个时候,直接提交信息. 第一想法就是,网上去copy一段代码直接用.但了百度.谷歌找了个遍,找到的代码80%以上都是一样的.有的代码 ...

  2. CSS中animate属性

    我记得,在工作中直接使用animation,只要能做出动画就完了,根本没有看每一个细节. 其实,这样做对于我们来说,的确没有错,因为工作中没有时间给你看每一个细节,大致看一篇就没下文了. 当我们想要好 ...

  3. 客户端无法tcp连接上本地虚拟机的问题(最后是linux防火墙问题)

    刚装好裸的centos6.5,很多东西跟以前比都是没有的,所以做起来会遇到很多问题. 今天刚把svn 无法ci的问题解决了,起完服后,发现客户端连不上. 1)端口转发,查看了一下虚拟机的端口转发,发现 ...

  4. 《Java数据结构与算法》笔记-CH5-链表-3双端链表

    /** * 双端链表的实现 */ class LinkA { public long dData; public LinkA next; public LinkA(long d) { dData = ...

  5. MYSQL数据库性能调优之五:解决慢查询--存储引擎与数据类型

    3.数据类型的影响 4.存储引擎的影响 看你的mysql现在已提供什么存储引擎:mysql> show engines; 看你的mysql当前默认的存储引擎:mysql> show var ...

  6. CMake编译linux C++

    CMake是一个跨平台的安装(编译)工具,可以用简单的语句来描述所有平台的安装(编译过程).他能够输出各种各样的makefile或者project文件,能测试编译器所支持的C++特性,类似UNIX下的 ...

  7. How to run a terminal inside of vim?

    [How to run a terminal inside of vim?] :sh turn vim into shell mode d+trl back to vim 参考:http://stac ...

  8. iOS开发中的测试框架

    转载作者:@crespoxiao 我们为什么要用测试框架呢?当然对项目开发有帮助了,但是业内现状是经常赶进度,所以TDD还是算了吧,BDD就测测数据存取和重要环节,这很重要,一次性跑完测试单元检查接口 ...

  9. JS、OnClientClick、OnClick

    OnClientClick是客户端事件处理方法,一般采用JavaScript来进行处理,也就是直接在浏览器端运行,一点击就运行: OnClick是服务器端事件处理方法,在服务器端也就是IIS中运行,点 ...

  10. opencv直方图均衡化

    #include <iostream> #include "highgui.h" #include "cv.h" #include "cx ...