大数求模 sicily 1020
- Problem Description
- Solved Number
- 2830
- Submit Number
- 8952
- Statistics
- Source code
- Discuss
1020. Big Integer
Constraints
Time Limit: 1 secs, Memory Limit: 32 MB
Description
Long long ago, there was a super computer that could deal with VeryLongIntegers(no VeryLongInteger will be negative). Do you know how this computer stores the VeryLongIntegers? This computer has a set of n positive integers: b1,b2,...,bn, which is called a basis for the computer.
The basis satisfies two properties:
1) 1 < bi <= 1000 (1 <= i <= n),
2) gcd(bi,bj) = 1 (1 <= i,j <= n, i ≠ j).
Let M = b1*b2*...*bn
Given an integer x, which is nonegative and less than M, the ordered n-tuples (x mod b1, x mod b2, ..., x mod bn), which is called the representation of x, will be put into the computer.
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains three lines.
The first line contains an integer n(<=100).
The second line contains n integers: b1,b2,...,bn, which is the basis of the computer.
The third line contains a single VeryLongInteger x.
Each VeryLongInteger will be 400 or fewer characters in length, and will only contain digits (no VeryLongInteger will be negative).
Output
For each test case, print exactly one line -- the representation of x.
The output format is:(r1,r2,...,rn)
Sample Input
2 3
2 3 5
10 4
2 3 5 7
13
Sample Output
(0,1,0)
(1,1,3,6)
Problem Source
ZSUACM Team Member
// Problem#: 1020
// Submission#: 2930409
// The source code is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
// URI: http://creativecommons.org/licenses/by-nc-sa/3.0/
// All Copyright reserved by Informatic Lab of Sun Yat-sen University
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <stack>
using namespace std;
int remainder(int n, int p, stack<int>*); int main() {
int t;
int bs[100];
int factors[100];
int num_b;
int b;
string x; //字符串保存大数
cin >> t;
while (t-- > 0) {
cin >> num_b;
for (int i = 0; i < num_b; i++) {
cin >> b;
bs[i] = b;
}
cin >> x; for (int i = 0; i < num_b; i++) {
int result = 0;
//解决超时主要在这步,也就是只用调用一次求余操作函数把全部10^n (n = x.lengt() -1, x.lengt() -2, ...., 1)的 % p全部算出来
//用一个栈来保存,而不用每次都重复计算10^n%p
stack<int> st;
int first_rd = remainder(x.length()-1, bs[i], &st);
//去掉 n = x.length() -2 ,..., 1时重复迭代保存的10^n % p的值,因为这些值均在 10 ^ (x.length()-1) % p步的递归中获得了
while (st.size() > x.length() - 1) {
st.pop();
}
st.push(first_rd);
for (int j = 0; j < x.length(); j++) {
//此步用到了 求解大数求余的公式
//(ab mod c) = ((a mod c) * (b mod c)) mod c
//(a+b) mod c = (a mod c + b mod c) mod c
result += (int)(((x[j]-48) % bs[i]) * st.top()) % bs[i];
st.pop();
}
factors[i] = result % bs[i];
}
cout << "(";
for (int i = 0; i < num_b; i++) {
if (i != num_b-1)
cout << factors[i] << ",";
else
cout << factors[i] << ")";
}
cout << endl;
}
return 0;
}
//递归求余数10^n % p,即 10^n % p = (remainder(n-1,p,st)*(10%p))%p,用的求模公式为(ab mod c) = ((a mod c) * (b mod c))%p
int remainder(int n, int p, stack<int> *st) {
if (n == 0)
return 1;
else {
//此步记得只递归一次
st->push(remainder(n-1, p, st));
return (st->top()* (10 % p)) % p;
}
}
大数求模 sicily 1020的更多相关文章
- LightOJ1214 Large Division —— 大数求模
题目链接:https://vjudge.net/problem/LightOJ-1214 1214 - Large Division PDF (English) Statistics Forum ...
- [18/12/3]蓝桥杯 练习系统 入门级别 Fibonacci数列求模问题 题解思路
前言略. 看到这个题目本来应该很高兴的,因为什么,因为太TM的基础了啊! 可是当你用常规方法尝试提交OJ时你会发现..hhh...运行超时..(开心地摇起了呆毛 //Fibonacci数列递归一般问题 ...
- 如何运用同余定理求余数【hdoj 1212 Big Number【大数求余数】】
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- HDU4704Sum 费马小定理+大数取模
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可 ...
- HPU 1471:又是斐波那契数列??(大数取模)
1471: 又是斐波那契数列?? 时间限制: 1 Sec 内存限制: 128 MB 提交: 278 解决: 27 统计 题目描述 大家都知道斐波那契数列吧?斐波那契数列的定义是这样的: f0 = 0; ...
- NYOJ-676小明的求助,快速幂求模,快速幂核心代码;
小明的求助 时间限制:2000 ms | 内存限制:65535 KB 难度:2 描述 小明对数学很有兴趣,今天老师出了道作业题,让他求整数N的后M位,他瞬间感觉老师在作弄他,因为这是so easy ...
- 【C语言学习趣事】_33_关于C语言和C++语言中的取余数(求模)的计算_有符号和无符号数的相互转换问题
最近再次复习C++语言,用的教材是<C++ Primer>这本教材, 看到第二章的时候,里面有个问题困扰了我. 于是想上网查查怎么回事, 结果看了很久都没有得到一个满意的答案. 书上有这么 ...
- hdu2302(枚举,大数取模)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2303 题意:给出两个数k, l(4<= k <= 1e100, 2<=l<=1 ...
- 求余VS求模--C语言中表述
之前看帖子,发现许多时候基本上大家都把求模和求余混为一谈了.但实际上二者的概念是有区别的 1. 求余 在C语言中,求余对应的操作符是%,且a%b求余的最后结果总是与a符号相同,最后的数值为|a|% ...
随机推荐
- boost.asio源码剖析
一. 前 言二. 架构浅析三. 流程分析 * 常见流程分析之一(Tcp异步连接) * 常见流程分析之二(Tcp异步接受连接) * 常见流程分析之三(Tcp异步读写数据) ...
- innobackupex的备份和恢复
http://blog.itpub.net/15480802/viewspace-1173479/ 1 原理 分3个阶段:备份backup – 预恢复prepare -- 恢复restore 注 ...
- MySQL通用优化 叶金荣!!!
http://mp.weixin.qq.com/s?__biz=MjM5NDE0MjI4MA==&mid=208777870&idx=1&sn=6efddd6283e4deb3 ...
- 代码片段---判断一文件是不是字符设备如果是把它拷贝到 /dev目录下
#!/bin/sh myfile=/home/liu 这个是文件的路径 fd = `ls -l myfile` 获取文件的所有属性 fp= ${fd::} if ["$fp" = ...
- 1.7.4.1 Function Queries-函数查询
1 . Function Queries 函数查询使你可以使用一个或者多个数字字段的实际的值生成一个关联的得分(score),函数查询支持DixMax,eDisMax,标准的查询解析. 函数查询使用函 ...
- 2015 FVDI V6.3 Software Free Download
2015 FVDI with software USB dongle has newly upgraded to V6.3. Here software upgrade list: ABRITES C ...
- Unity3D 使用脚本来控制 UI 的 Image 显示的图片。
记录一下这个问题. 原文地址:http://tieba.baidu.com/p/3561719701 object obj = Resources.Load(资源名, typeof(Sprite)); ...
- 【Android Api 翻译2】Android Testing(1) 浅尝Android测试的奥秘
------- 源自梦想.永远是你IT事业的好友.只是勇敢地说出我学到! ---------- 仅供学习和交流使用,翻译不好勿喷,请只摘除不合适的地方 Testing The Android fram ...
- sql over开窗函数
1.使用over子句与rows_number()以及聚合函数进行使用,可以进行编号以及各种操作.而且利用over子句的分组效率比group by子句的效率更高. 2.在订单表(order)中统计中,生 ...
- iOS webView的一些基本用法
1.自己拼接html来显示想要的文字(参考:http://www.mamicode.com/info-detail-492242.html) NSString *htmlStr=@"< ...