首先看到这题脑子里立刻跳出链表。。后来继续看如家的分析说,链表法时间复杂度为O(n*k),肯定会TLE,自己才意识到果然自个儿又头脑简单了 T^T.

看如家的分析没怎么看懂,后来发现这篇自己理解起来更容易(...)共享一下~http://blog.csdn.net/chenguolinblog/article/details/8873444

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。

编号0~(n-1)是有意义的,因为要模n,所以用0-(n-1)更好操作
我们知道第一个人(编号一定是(m-1) mod n) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m mod n的人开始):

k k+1 k+2 ... n-2,n-1,0,1,2,... k-2
并且从k开始报0。
现在我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-2 --> n-2
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k) mod n;

所以我们只要一直重复这个过程便能求得最开始那个人的编号,因为这个人最终的编号是0(只剩他一个人):0->(0+k)%2->((0+k)%2+k)%3->......
f[n]=(f[n-1]+k)%n,f[1]=0;  f[i]表示有i个人时,最后胜利者编号

==========================================

注意此上思路就适用于经典约瑟夫环问题。

==========================================

下面就要变形了...

现在这个问题是从m开始,即是首先(m-1)编号的人出去。。然后就和普通约瑟夫环一样了。故只要我们f[n]=(f[n-1]+m)%n单独算就行了。其他f[i]=(f[i-1]+k)%i;(1<i<n);

代码如下:

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
const int maxn = ;
int f[maxn];
int main()
{
int n, k, m, step, cnt;
while(~scanf("%d%d%d", &n, &k, &m))
{
if(!n && !k && !m) break;
f[] = ;
for(int i = ; i < n; i++)
{
f[i] = (f[i-]+k)%i;
}
int ans = (f[n-]+m)%n;
printf("%d\n", ans+);
}
return ;
}

【约瑟夫环变形】UVa 1394 - And Then There Was One的更多相关文章

  1. HDU 5643 King's Game | 约瑟夫环变形

    经典约瑟夫环 }; ; i<=n; i++) { f[i] = (f[i-] + k) % i; } 变形:k是变化的 #include <iostream> #include &l ...

  2. Poj 3517 And Then There Was One(约瑟夫环变形)

    简单说一下约瑟夫环:约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个 ...

  3. poj 1012 &amp; hdu 1443 Joseph(约瑟夫环变形)

    题目链接: POJ  1012: id=1012">http://poj.org/problem?id=1012 HDU 1443: pid=1443">http:// ...

  4. F - System Overload(约瑟夫环变形)

    Description Recently you must have experienced that when too many people use the BBS simultaneously, ...

  5. G - And Then There Was One (约瑟夫环变形)

    Description Let’s play a stone removing game. Initially, n stones are arranged on a circle and numbe ...

  6. UVA 305 Joseph (约瑟夫环 打表)

     Joseph  The Joseph's problem is notoriously known. For those who are not familiar with the original ...

  7. HDU 5643 King's Game 【约瑟夫环】

    题意: 变形的约瑟夫环,最初为每个人编号1到n,第i次删去报号为i的人,然后从它的下一个人开始重新从1开始报号,问最终剩下第几号人? 分析: 首先看一下裸的约瑟夫环问题: 共n个人,从1开始报数,报到 ...

  8. And Then There Was One(约瑟夫问题变形)

    题目链接:http://poj.org/problem?id=3517 And Then There Was One Time Limit: 5000MS   Memory Limit: 65536K ...

  9. UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)

    UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There W ...

随机推荐

  1. STC89C52RC片内资源介绍

    STC89C52RC片内有:用户应用程序区(AP)8K,地址0000h-1FFFh. 数据flash区(EEPROM)4K,2000h-2FFFh ISP引导区空间1K/2k/4k. RAM 512B ...

  2. Java虚拟机学习 - 体系结构 内存模型

    一:Java技术体系模块图 二:JVM内存区域模型 1.方法区 也称"永久代” .“非堆”, 它用于存储虚拟机加载的类信息.常量.静态变量.是各个线程共享的内存区域.默认最小值为16MB,最 ...

  3. CodeForces 705A Hulk (水题)

    题意:输入一个 n,让你输出一行字符串. 析:很水题,只要判定奇偶性,输出就好. 代码如下: #pragma comment(linker, "/STACK:1024000000,10240 ...

  4. iOS-图片png

    把图片添加到工程里面:就报了108个警告!!! 然后我发现我添加的图片有很多命名是这样子的: xcode去找图片的时候是按照什么方式找的呢????? 还发现有好几张同名的图片..... ------- ...

  5. 学习微软中间语言(MSIL)的绝佳工具 Dotnet IL Editor 推荐

    Dotnet IL Editor是一款.NET平台反编译工具,可以反编译.NET程序集文件为IL代码,并且可以执行,调试反编译后生成的IL代码.它的设计出发点比较直观,新建一个项目,添加程序集文件,设 ...

  6. 超级终端和SecureCRT进行Console口的连接

    国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html 内部邀请码:C8E245J (不写邀请码,没有现金送) 国 ...

  7. UVa Online Judge 工具網站

    UVa Online Judge 工具網站   UVa中译题uHuntAlgorithmist Lucky貓的ACM園地,Lucky貓的 ACM 中譯題目 Mirror UVa Online Judg ...

  8. DuiLib(一)——窗口及消息

    最近看了下开源界面库duilib的代码,写几篇相关的文章.网上已经有好多相关的文章了,我这里只是记录自己的学习过程,写到哪里算哪里,权当自娱自乐. duilib是一轻量级的direcui界面库,所谓d ...

  9. Spring aop实现方式记录

    原文地址:http://blog.csdn.net/moreevan/article/details/11977115 Spring提供了两种方式来生成代理对象: JDKProxy和Cglib,具体使 ...

  10. CopyU!v2 已经收录到腾讯软件管家!

    腾讯软件管家已经正式收录了CopyU!,这样大家又多了一个安全快速下载软件的好途径!腾讯渠道的CopyU!更新将会保持与官方同步,现有下载CopyU!软件的渠道中,官方保证同步的主要有: 1.非凡软件 ...