【编程之美】计算1-N中含1的个数
转自:点我
1位数的情况:
在解法二中已经分析过,大于等于1的时候,有1个,小于1就没有。
2位数的情况:
N=13,个位数出现的1的次数为2,分别为1和11,十位数出现1的次数为4,分别为10,11,12,13,所以f(N) = 2+4。
N=23,个位数出现的1的次数为3,分别为1,11,21,十位数出现1的次数为10,分别为10~19,f(N)=3+10。
由此我们发现,个位数出现1的次数不仅和个位数有关,和十位数也有关,如果个位数大于等于1,则个位数出现1的次数为十位数的数字加1;如果个位数为0,个位数出现1的次数等于十位数数字。而十位数上出现1的次数也不仅和十位数相关,也和个位数相关:如果十位数字等于1,则十位数上出现1的次数为个位数的数字加1,假如十位数大于1,则十位数上出现1的次数为10。
3位数的情况:
N=123
个位出现1的个数为13:1,11,21,…,91,101,111,121
十位出现1的个数为20:10~19,110~119
百位出现1的个数为24:100~123
我们可以继续分析4位数,5位数,推导出下面一般情况:
假设N,我们要计算百位上出现1的次数,将由三部分决定:百位上的数字,百位以上的数字,百位一下的数字。
如果百位上的数字为0,则百位上出现1的次数仅由更高位决定,比如12013,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,共1200个。等于更高位数字乘以当前位数,即12 * 100。
如果百位上的数字大于1,则百位上出现1的次数仅由更高位决定,比如12213,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,12100~12199共1300个。等于更高位数字加1乘以当前位数,即(12 + 1)*100。
如果百位上的数字为1,则百位上出现1的次数不仅受更高位影响,还受低位影响。例如12113,受高位影响出现1的情况:100~199,1100~1199,2100~2199,…,11100~11199,共1200个,但它还受低位影响,出现1的情况是12100~12113,共114个,等于低位数字113+1。
综合以上分析,写出如下代码:
#include<cstdio>
#include<iostream>
using namespace std;
long CountOne2(long n){
long count = ;
long i = ;
long current = ,after = ,before = ;
while((n / i) != ){
current = (n / i) % ;
before = n / (i * );
after = n - (n / i) * i;
if (current > )
count = count + (before + ) * i;
else if (current == )
count = count + before * i;
else if(current == )
count = count + before * i + after + ;
i = i * ;
}
return count;
}
int main(){
long n;
while((cin >> n)){
cout << CountOne2(n) << endl;
}
return ;
}
【编程之美】计算1-N中含1的个数的更多相关文章
- 【编程之美】2.5 寻找最大的k个数
有若干个互不相等的无序的数,怎么选出其中最大的k个数. 我自己的方案:因为学过找第k大数的O(N)算法,所以第一反应就是找第K大的数.然后把所有大于等于第k大的数取出来. 写这个知道算法的代码都花了2 ...
- first blog编程之美-----计算1的个数
根据以下总结写出以下程序,总结来源于网上 感想:得硬着头皮找规律 #include int count1(int n) { int i=1; int count=0 ...
- 编程之美 set 10 队列中取最大值操作问题
题目 假设有这样一个拥有三个操作的队列 1. Enqueue(v) 2. Dequeue() 3. MaxEle() 请设计一种数据结构和算法, 让 MAXELE 操作的时间复杂度尽可能的低 思路 1 ...
- hdu--1029 编程之美 在数组a中 (元素个数n n是奇数)找一个数字 它出现的次数大于(n+1)/2
我为什么总是犯这些愚蠢错误啊,还是自己逻辑不够严谨. 努力ing...... #include <iostream> #include <cstdio> #include &l ...
- 计算n阶乘中尾部零的个数
大佬答案 大佬的思路看了好久,每次看都会明白一丢丢,现在还有不明白的地方,但是要往后继续加油了,知新温故. 结论:参与阶乘的所有数的因子中只要存在一个2和一个5就会在阶乘的结果中产生一个0. 又因为因 ...
- <<编程之美>> -- 队列中取最大值操作的问题
不得不说编程之美是一本好书,虽然很多题目在做acm中的过程中遇到过,不过还是有很多值得思考的地方 这是今天在编程之美上看到的一个问题,对于栈转化成队列的一个思考 平时都太过依赖c++内函数库中的栈和队 ...
- 第六章第二十题(计算一个字符串中字母的个数)(Count the letters in a string) - 编程练习题答案
*6.20(计算一个字符串中字母的个数)编写一个方法,使用下面的方法头计算字符串中的字母个数: public static int countLetters(String s) 编写一个测试程序,提示 ...
- 【编程之美】CPU
今天开始看编程之美 .第一个问题是CPU的使用率控制,微软的问题果然高大上,我一看就傻了,啥也不知道.没追求直接看答案试了一下.发现自己电脑太好了,4核8线程,程序乱飘.加了一个进程绑定,可以控制一个 ...
- [质疑]编程之美求N!的二进制最低位1的位置的问题
引子:编程之美给出了求N!的二进制最低位1的位置的二种思路,但是呢?但是呢?不信你仔细听我道来. 1.编程之美一书给出的解决思路 问题的目标是N!的二进制表示中最低位1的位置.给定一个整数N,求N!二 ...
随机推荐
- PHP之SQL防注入代码集合(建站常用)
SQL防注入代码一 <?php if (!function_exists (quote)) { function quote($var) { if (strlen($var)) { $var=! ...
- jQuery1.9.1源码分析--Ajax模块
//Serialize an array of form elements or a set of //key/values into a query string // 将数组形式的表单元素或者哈希 ...
- hdu 4324 Triangle LOVE(拓扑排序,基础)
题目 /***************************参考自****************************/ http://www.cnblogs.com/newpanderking ...
- 解决 Ubuntu 开机 Waiting for 60 seconds more for network configuration
sudo vim /etc/network/interfaces, 将该文件的内容修改为如下:(也就是说删掉其他的什么auto eth0.auto wlan0) auto lo iface lo in ...
- ubuntu 13.10 64bit装BeyondCompare
1. Beyond Compare官网下载amd-64位的,安装失败,依赖于ia32-libs,但是这个文件已经不在源里了: 2. 官网下载tar.gz源码包,解压安装失败: 3. 直接装32位的,可 ...
- lintcode :Trailing Zeros 尾部的零
题目: 尾部的零 设计一个算法,计算出n阶乘中尾部零的个数 样例 11! = 39916800,因此应该返回 2 挑战 O(logN)的时间复杂度 解题: 常用方法: 也许你在编程之美中看到,通过求能 ...
- Winsock完成端口模型-Delphi代码
原文出处 <Windows网络编程技术>第8章 完成端口模型 由于原书附的是C代码,我把其翻译成Delphi代码. 其中winsock2.pas在delphi中不带,要另外下载http:/ ...
- android的jni
一.底层实现: c文件:hardware/libhardware_legacy/power/power.c 以其中set_screen_state(int)函数为例 其Android.mk中添加: ...
- OpenCV源码阅读(3)---base.hpp
base.h处于core模块中,是OpenCV的核心类.其作用是定义了OpenCV的基本错误类型,在程序运行出现错误是抛出错误,防止数据溢出.总而言之,其功能主要是考虑程序的健壮性. 头文件 #ifn ...
- Java API —— 多线程
1.多线程概述 1)进程: 正在运行的程序,是系统进行资源分配和调用的独立单位. 每一个进程都有它自己的内存空间和系统资源. 2)线程: ...