[ USACO 2018 OPEN ] Out of Sorts (Platinum)
\(\\\)
\(Description\)
对一长为\(N\)的数列\(A\)排序,不保证数列元素互异:
数列\(A\)中\(A[1...i]\)的最大值不大于\(A[i+1…N]\)的最小值,我们就称元素\(i\)和\(i+1\)之间的位置为一个分隔点.
当数列未排好序时,将每一个由分隔点分出的区间单独进行一次顺序扫描的冒泡排序,循环至数列排好序。
形式化的代码可以描述成:
work_counter = 0
bubble_sort_pass (A) {
for i = 0 to length(A)-2
if A[i] > A[i+1], swap A[i] and A[i+1]
}
quickish_sort (A) {
if length(A) = 1, return
do {
work_counter = work_counter + length(A)
bubble_sort_pass(A)
} while (no partition points exist in A)
divide A at all partition points;
recursively quickish_sort each piece
}
求退出循环后\(work\_counter\)的值。
- \(N\in [0,10^5]\),\(A_i\in [0,10^9]\)
\(\\\)
\(Solution\)
注意到由定义的分隔点分开的每一个区间内,所有元素只会在这一区间内交换,而不会越过分隔点,所以对每一个区间单独冒泡排序与对整个数列冒泡排序是一样的。
所以问题中计数的递归区间总长度,其实是每一个数字被比较的次数之和,其实就是每个数字被递归的层数之和。当一个数字不再被递归计算,当且仅当区间长度为\(1\),即左右都产生了分隔点。于是问题变为:计算每一个数左右都产生分隔点所需的递归次数之和。
每一个数左右都产生分隔点的递归次数又可以看做两个分隔点产生的时间取\(max\),于是只需统计每一个分隔点产生的递归层数。
回到分隔点定义,一个分割点产生,只需要两侧的元素都正确的分开,而不是两侧都排好序。所以一个分隔点产生的时间,是所有应该在左区间的右区间的数移到左区间的时间,和所有应该在右区间的左区间的数移到右区间的时间取最大值。注意到是单向冒泡排序,所以排序的瓶颈在于应当向前移动的那些数字,因为它们每次只会向前移动一个位置。所以我们需要统计离分隔点最远的应移到左区间的点,到分隔点的距离。
于是排序后第一遍扫描统计每一个分隔点产生时间,第二遍扫描累加答案即可。要注意即使一个元素开始就在应该在的地方,即左右分隔点产生时间都为\(0\),也应该计数,因为运行代码中,开始需要将数列扫描一遍来确定是否需要递归。
\(\\\)
\(Code\)
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 100010
#define R register
#define gc getchar
using namespace std;
typedef long long ll;
inline ll rd(){
ll x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
ll n,ans=1,t[N];
struct seq{ll x,p;}s[N];
inline bool cmp(seq x,seq y){
return x.x==y.x?x.p<y.p:x.x<y.x;
}
int main(){
n=rd();
if(n==0){puts("0");return 0;}
for(R ll i=1;i<=n;++i){s[i].x=rd();s[i].p=i;}
sort(s+1,s+1+n,cmp);
for(R ll i=1,mx=0;i<=n;++i){
mx=max(mx,s[i].p); t[i]=mx-i;
}
ans=t[1];
for(R ll i=2;i<=n;++i) ans+=max(t[i-1],max(t[i],1ll));
printf("%lld\n",max(ans,n));
return 0;
}
[ USACO 2018 OPEN ] Out of Sorts (Platinum)的更多相关文章
- [ USACO 2018 OPEN ] Out of Sorts (Gold)
\(\\\) \(Description\) 运行以下代码对一长为\(N\)的数列\(A\)排序,不保证数列元素互异: cnt = 0 sorted = false while (not sorted ...
- [ USACO 2018 OPEN ] Out of Sorts (Silver)
\(\\\) \(Description\) 运行以下代码对一长为\(N\)的数列\(A\)排序,不保证数列元素互异: cnt = 0 sorted = false while (not sorted ...
- 【二分+拓扑排序】Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348
目录 Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 MEA ...
- [USACO 2018 Open Contest]作业总结
t1-Out of Sorts 题目大意 将最大的数冒泡排序到最后需要多少次操作. 分析 排序后判断距离. ac代码 #include<bits/stdc++.h> #define N 1 ...
- [USACO 2018 Feb Gold] Tutorial
Link: USACO 2018 Feb Gold 传送门 A: $dp[i][j][k]$表示前$i$个中有$j$个0且末位为$k$的最优解 状态数$O(n^3)$ #include <bit ...
- [USACO 2018 Jan Gold] Tutorial
Link: USACO 2018 Jan Gold 传送门 A: 对于不同的$k$,发现限制就是小于$k$的边不能走 那么此时的答案就是由大于等于$k$的边形成的图中$v$所在的连通块除去$v$的大小 ...
- [LOJ#2386]. 「USACO 2018.01 Platinum」Cow at Large[点分治]
题意 题目链接 分析 假设当前的根为 rt ,我们能够在奶牛到达 \(u\) 之时拦住它,当且仅当到叶子节点到 \(u\) 的最短距离 \(mn_u \le dis_u\) .容易发现,合法的区域是许 ...
- 【杂题1】USACO 2018 Open Contest-练习
https://www.xoj.red/contests/show/1231 下面会写一些题目的解析什么的,当然不会粘贴题目只是简单提一下 (部分题目简单的题目就不概括了) 其实难度应该前面比较低. ...
- [USACO 2018 December Contest]作业总结
t1 Convention 题目大意 每一头牛都有一个来的时间,一共有\(n\)辆车,求出等待时间最长的那头牛等待的最小时间. 解法 第一眼看到这道题还以为是\(2018noip\)普及组的t3魔鬼题 ...
随机推荐
- noip模拟赛 戏
[问题背景]zhx 和他的妹子(们) 做游戏.[问题描述]考虑 N 个人玩一个游戏,任意两个人之间进行一场游戏(共 N*(N-1)/2 场),且每场一定能分出胜负.现在, 你需要在其中找到三个人构成“ ...
- Spring的Java配置方式
Java配置是Spring4.x推荐的配置方式,可以完全替代xml配置. 1 @Configuration 和 @Bean Spring的Java配置方式是通过 @Configuration ...
- [poj1678]I Love this Game!_博弈论
I Love this Game! 题目大意:题目链接 注释:略. 想法: 开始的时候以为没法dp,结果...:a>0啊! 所以可以直接dp了啊! 状态:dp[i]表示先手选了a[i]的状态. ...
- SAP Portal 上传资源到WRR
Uploading Resources to the Web Resource Repository Prerequisites You have been assigned the Content ...
- - > 强烈推荐!!!
学长的微博总是能帮我们解决很多问题QAQ,超有用的: http://blog.csdn.net/cax1165/article/category/6294316/6
- js/jq仿window文件夹移动/剪切/复制等操作
1.先看下效果吧! 2.在添加一个index.html <!DOCTYPE html> <html lang="en"> <head> < ...
- MVC中动作方法三个特性以及解决同名方法冲突
一.Http请求谓词特性(解决方法同名冲突问题的一个方案) 关于Http谓词特点:经常使用,如果不加上该特性,默认动作方法接收所有谓词的请求一般开发中都会加上谓词,限定请求谓词类型 二.NonActi ...
- php 把一个数组分成有n个元素的二维数组的算法
一.第一种解法 <?php //把一个数组分成几个数组 //$arr 是数组 //$num 是数组的个数 function partition($arr,$num){ //数组的个数 $list ...
- Mariadb-lib
mariadb-libs-5.5.44-2.el7.centos.x86_64
- 70.资金管理-福利表管理 Extjs 页面
1. <%@ page language="java" import="java.util.*" pageEncoding="UTF-8&quo ...