Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】

 

【样例输入2】

 

Sample Output

【样例输出1】


【样例输出2】


对于100%的数据:1 ≤ n, m ≤ 100,000。

 

Solution

先证明一下,假设有一个点(x,y),那么该点到原点连线上点的数量为gcd(x,y)-1

设gcd(x,y)=t,则x=at,y=bt

那么离原点最近且在连线上的点为(a,b)

因此,连线上所有点一次为(a,b),(2a,2b),(3a,3b)...

去掉点(x,y)共有t-1个这样的整数点对

那么答案转化为求∑(1<=i<=n)∑(1<=j<=m)gcd(i,j)

可以用欧拉函数,预处理+递推

popoqqq的题解:

考虑容斥原理+递推

设g(x)=公因数为x的点对(i,j)的个数,f(x)=最大公因数为x的点对(i,j)的个数

因此g(x)=n/x * m/x,f(x)=g(x)-∑(i*x<=min(n,m))f(i*x)

所以倒着递推一遍就行了

#include <stdio.h>
int n,m,i,j,mn;long long f[100010],ans;
int main(){
for(scanf("%d%d",&n,&m),mn=i=n<m?n:m;i;ans+=f[i]*(i+i-1),i--)
for(f[i]=(long long)(n/i)*(m/i),j=2;i*j<=mn;f[i]-=f[i*j],j++);
printf("%lld\n",ans);
return 0;
}

orz n+e

[bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)的更多相关文章

  1. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  2. hdu2588 GCD 给定n,m。求x属于[1,n]。有多少个x满足gcd(x,n)>=m; 容斥或者欧拉函数

    GCD Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Sub ...

  3. 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)

    GCD Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submissio ...

  4. BZOJ 2005: [Noi2010]能量采集(容斥+数论)

    传送门 解题思路 首先题目要求的其实就是\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m [(gcd(i,j)-1)*2+1)]\),然后变形可得\(-n*m+2\s ...

  5. Luogu P1447 [NOI2010]能量采集 数论??欧拉

    刚学的欧拉反演(在最后)就用上了,挺好$qwq$ 题意:求$\sum_{i=1}^{N}\sum_{j=1}^{M}(2*gcd(i,j)-1)$ 原式 $=2*\sum_{i=1}^{N}\sum_ ...

  6. 洛谷 1447 [NOI2010]能量采集——容斥/推式子

    题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...

  7. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  8. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  9. BZOJ2005: [Noi2010]能量采集(欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

随机推荐

  1. Unix\Linux | 总结笔记 | 命令_ WC

    wc[选项][参数] wc命令用来计算数字.利用wc指令我们可以计算文件的Byte数.字数或是列数,若不指定文件名称,或是所给予的文件名为“-”,则wc指令会从标准输入设备读取数据. -c或--byt ...

  2. 《windows核心编程系列》二十一谈谈基址重定位和模块绑定

    每个DLL和可执行文件都有一个首选基地址.它表示该模块被映射到进程地址空间时最佳的内存地址.在构建可执行文件时,默认情况下链接器会将它的首选基地址设为0x400000.对于DLL来说,链接器会将它的首 ...

  3. 【已解决】python中文字符乱码(GB2312,GBK,GB18030相关的问题)

      http://againinput4.blog.163.com/blog/static/1727994912011111011432810/ [已解决]python中文字符乱码(GB2312,GB ...

  4. ROS学习笔记六:xxx.launch文件详解

    每当我们需要运行一个ROS节点或工具时,都需要打开一个新的终端运行一个命令.当系统中的节点数量不断增加时,每个节点一个终端的模式会变得非常麻烦.那么有没有一种方式可以一次性启动所有节点呢?答案当然是肯 ...

  5. [UOJ311]积劳成疾

    题解 dp 似乎这个最大值不好设计状态啊== 但是可以发现这\(n\)个点每个点都是相同的 可以设计状态\(f_{i,j}\)表示一个长度为\(i\)的一段区间的最大值不会超过\(j\)的价值 那么转 ...

  6. Sign on Fence CodeForces - 484E

    http://codeforces.com/problemset/problem/484/E 题意: 给定一个长度为n的数列,有m次询问,询问形如l r k 要你在区间[l,r]内选一个长度为k的区间 ...

  7. 博弈 HDOJ 4371 Alice and Bob

    题目传送门 题意:Alice和 Bob轮流写数字,假设第 i 次的数字是S[i] ,那么第 i+1 次的数字 S[i+1] = S[i] + d[k] 或 S[i] - d[k],条件是 S[i+1] ...

  8. VS2010中使用命令行参数 分类: c/c++ 2014-07-11 22:24 634人阅读 评论(0) 收藏

    在Linux下编程习惯了使用命令行参数,故使用VS2010时也尝试了一下. 新建项目,c++编写程序如下: #include<iostream> #include<fstream&g ...

  9. C# 操作Access的Ole对象[转]

    原文链接 OLE对象数据类型 (1)OLE 对象用于使用 OLE 协议在其他程序中创建的 OLE 对象,如 Microsoft Word 文档. Microsoft Excel 电子表格.图片.声音或 ...

  10. hihocoder offer收割编程练习赛12 D 寻找最大值

    思路: 可能数据太水了,随便乱搞就过了. 实现: #include <iostream> #include <cstdio> #include <algorithm> ...