Alex和Lee玩游戏,共有偶数堆石头,石头总数为奇数,两人每次要么拿第一堆,要么拿最后一堆,两人以最优策略拿石堆(一次拿走完整的一堆),Alex先手,Alex赢返回True,否则返回False。


思路:一共偶数堆石头,当石堆总数为偶数时,Alex拿;当石堆总数为奇数时,Lee拿。每次拿石堆,要么拿第一堆,要么拿最后一堆。

dp[i][j][0]:当石堆第一堆为i,最后一堆为j时,Alex取得石头的总数。

dp[i][j][1]:当石堆第一堆为i,最后一堆为j时,Lee取得石头的总数。

dp过程相当于计算两人去石头方式的所有可能。

并且,只要有一种情况下Alex能赢,那么Alex就必赢,因为两人以最优策略取石堆且Alex先手。

bool stoneGame(vector<int>& piles) {
int dp[][][];
int head=,tail=piles.size()-;
memset(dp,,sizeof(dp));
bool flag=;
for(int i=head; i<=tail; i++)
for(int j=tail; j>=i; j--)
{
int len=j-i+;
if(len%==)
{
dp[i+][j][]=dp[i][j][]+piles[i];
dp[i][j-][]=dp[i][j][]+piles[j];
dp[i+][j][]=dp[i][j][];
dp[i][j-][]=dp[i][j][];
}
else
{
if(i==j)
{
dp[i+][j][]=dp[i][j][]+piles[i];
dp[i+][j][]=dp[i][j][];
if(dp[i][j][]>dp[i+][j][])
{
printf("%d %d\n",dp[i][j][],dp[i+][j][]);
flag=;
}
}
else
{
dp[i+][j][]=dp[i][j][]+piles[i];
dp[i][j-][]=dp[i][j][]+piles[j];
dp[i+][j][]=dp[i][j][];
dp[i][j-][]=dp[i][j][];
}
}
}
if(flag)
return ;
else
return ;
}

leetcode_Stone Game_dp_思维的更多相关文章

  1. [C#][算法] 用菜鸟的思维学习算法 -- 马桶排序、冒泡排序和快速排序

    用菜鸟的思维学习算法 -- 马桶排序.冒泡排序和快速排序 [博主]反骨仔 [来源]http://www.cnblogs.com/liqingwen/p/4994261.html  目录 马桶排序(令人 ...

  2. Photoshop、Illustrator思维导图笔记

    半年前学习Photoshop时记得的思维导图笔记,可能不是很全,常用的基本都记下了.

  3. CYQ.Data 从入门到放弃ORM系列:开篇:自动化框架编程思维

    前言: 随着CYQ.Data 开始回归免费使用之后,发现用户的情绪越来越激动,为了保持这持续的激动性,让我有了开源的念头. 同时,由于框架经过这5-6年来的不断演进,以前发的早期教程已经太落后了,包括 ...

  4. 计算机程序的思维逻辑 (8) - char的真正含义

    看似简单的char 通过前两节,我们应该对字符和文本的编码和乱码有了一个清晰的认识,但前两节都是与编程语言无关的,我们还是不知道怎么在程序中处理字符和文本. 本节讨论在Java中进行字符处理的基础 - ...

  5. 计算机程序的思维逻辑 (29) - 剖析String

    上节介绍了单个字符的封装类Character,本节介绍字符串类.字符串操作大概是计算机程序中最常见的操作了,Java中表示字符串的类是String,本节就来详细介绍String. 字符串的基本使用是比 ...

  6. 计算机程序的思维逻辑 (31) - 剖析Arrays

    数组是存储多个同类型元素的基本数据结构,数组中的元素在内存连续存放,可以通过数组下标直接定位任意元素,相比我们在后续章节介绍的其他容器,效率非常高. 数组操作是计算机程序中的常见基本操作,Java中有 ...

  7. 计算机程序的思维逻辑 (33) - Joda-Time

    Joda-Time上节介绍了JDK API中的日期和时间类,我们提到了JDK API的一些不足,并提到,实践中有一个广泛使用的日期和时间类库,Joda-Time,本节我们就来介绍Joda-Time.俗 ...

  8. 计算机程序的思维逻辑 (53) - 剖析Collections - 算法

    之前几节介绍了各种具体容器类和抽象容器类,上节我们提到,Java中有一个类Collections,提供了很多针对容器接口的通用功能,这些功能都是以静态方法的方式提供的. 都有哪些功能呢?大概可以分为两 ...

  9. 成吨提高开发效率:Intellij Shortcuts精简子集与思维模式

    在线精简cheatsheet备查表:intellij.linesh.twGithub项目:intellij-mac-frequent-keymap Intellij的快捷键多而繁杂,从官方推荐的key ...

随机推荐

  1. Android应用基础学习记录

    01_前言 前言,了解了Android的情况.这里也介绍一下本文.本文是记录学习Android应用程序开发过程,视频中使用的Android2.2版本号,我以4.2版本号为基础,找出当中的差异并记录下来 ...

  2. C# Stopwatch

    问题一:前几天写并行计算的实际应用——通讯录的时候,用到了stopwatch来计时,发现这个计时是真正的计时. Stopwatch stopwatch = new Stopwatch(); TimeS ...

  3. EF1:MVC/EF(Entity Framewok) /First Migrations

    1. 概念 Entity Framework: ADO.NET Entity Framework 是微软以 ADO.NET 为基础所发展出来的对象关系对应 (O/R Mapping) 解决方案.(此处 ...

  4. P4284 [SHOI2014]概率充电器 dp

    这个题题干说的不清楚,一开始我以为只能是旁边紧挨着的传火,导致我一开始根本不知道哪错了.后来,我想到树形dp,但是需要正反考虑,()既要考虑父亲,又要考虑儿子),互相都有影响,所以没太想出来.后来知道 ...

  5. MSTAR MIPS DUMP查找方法

  6. choice() 函数

    描述 choice() 方法返回一个列表,元组或字符串的随机项. 语法 以下是 choice() 方法的语法: import random random.choice( seq ) 注意:choice ...

  7. coderfoces446c (斐波那契数列)

    题目描述: 区间增值,但是每一项增加的值为Fi - l + 1,F[i]为斐波那契数列,求区间和? 考虑线段树,刚开始想用斐波那契数列的前n项和,可是推不出来,考虑到每个区间的增值序列都是一段斐波那契 ...

  8. SQL Server 日期转换成字符串

    参考网址:http://wenku.baidu.com/view/970c6c1655270722192ef70e.html 下面是常用的几个 --返回06-27-13 ), ) --2013-06- ...

  9. mybatis基础学习4-插件生成器(根据数据库的表生成文件)

    1:安装(根据数据库的表生成文件) 2:在所建项目单击右键输入mybatis如下图 *建项目文件时不用建包和类,插件可以根据数据表自动生成,在配置文件(generatorConfig.xml)里写即可 ...

  10. idea运行scala有问题

    报这个错误:java.lang.NoSuchMethodError: scala.Predef$.refArrayOps([Ljava/lang/Object;)Lscala/collection/m ...