NOIp模拟赛 西行妖下
题目描述:
给出一棵n个节点的树,每个点初始m值为1。
你有三种操作:
1.Add l r k ,将l到r路径上所有点m值加k。
2.Multi l r k ,将l到r路径上所有点m值乘k。
3.Query l r ,设x是l到r路径上的点,y是x的m值。假设有1~y共y个点,随机打乱,求形成错排的概率。
(k<=1000,n<=80000)
题解:
树剖正解?
(反正我用的dfs序+并查集)
首先1000^80000错排怎么搞啊?
要明白我们真正要的并不是错排数,而是错排数/阶乘。
打表后发现他是:
0.0,0.5,0.333333333,0.375,0.366666667,0.368055556,0.367857143,0.367881944,0.367879464
最后一位用的一般值。
(后来发现这个精度依然不够,要用错排递推直接打表。不然会卡精。)
树链怎么修改啊?
其实可以用单点修改……
重点在于一共只有80000个点,如果m值超过15就不用处理了,保留15位就够了……
所以单点最多修改80000*15次……
并查集维护。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
//lgl AK in NOIp
#define N 80050
double num[],tmp[];
void init()
{
double now = ;
tmp[]=0.0,tmp[]=1.0;
num[]=0.5;
for(int i=;i<;i++)
{
now*=(double)i;
tmp[i]=(double)(i-)*(tmp[i-]+tmp[i-]);
num[i]=(double)tmp[i]/now;
}
}
int n,hed[N],cnt,q;
char ch[];
struct EG
{
int to,nxt;
}e[*N];
void ae(int ff,int t)
{
e[++cnt].to = t;
e[cnt].nxt = hed[ff];
hed[ff] = cnt;
}
struct aaafku
{
int s[*N];
void ins(int x,int d)
{
while(x<*N)
{
s[x]+=d;
x+=(x&(-x));
}
}
int qry(int x)
{
int ret = ;
while(x)
{
ret+=s[x];
x-=(x&(-x));
}
return ret;
}
}f[];
int las[N];
int dep[N],siz[N],fa[N],son[N],top[N],typ[N];
int tin[N],tout[N],tim;
void dfs1(int u,int ff)
{
tin[u]=++tim;
typ[u]=;
siz[u]=;
dep[u]=dep[ff]+;
las[u]=u;
f[].ins(tin[u],);
for(int j=hed[u];j;j=e[j].nxt)
{
int to = e[j].to;
if(to==ff)continue;
fa[to]=u;
dfs1(to,u);
siz[u]+=siz[to];
if(siz[to]>siz[son[u]])son[u]=to;
}
tout[u]=tim;
f[].ins(tout[u]+,-);
}
void dfs2(int u,int tp)
{
top[u] = tp;
if(!son[u])return ;
dfs2(son[u],tp);
for(int j=hed[u];j;j=e[j].nxt)
{
int to = e[j].to;
if(to!=fa[u]&&to!=son[u])
dfs2(to,to);
}
}
int get_lca(int x,int y)
{
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]])swap(x,y);
x=fa[top[x]];
}
return dep[x]<dep[y]?x:y;
}
int get_las(int x)
{
if(las[x]==x)return x;
return las[x]=get_las(las[x]);
}
void deala(int u,int k,int lim)
{
if(dep[u]<=lim)return ;
f[typ[u]].ins(tin[u],-);
f[typ[u]].ins(tout[u]+,);
typ[u] = min(,typ[u]+k);
f[typ[u]].ins(tin[u],);
f[typ[u]].ins(tout[u]+,-);
deala(get_las(fa[u]),k,lim);
if(typ[u]==)las[u]=fa[u];
}
void dealb(int u,int k,int lim)
{
if(dep[u]<=lim)return ;
f[typ[u]].ins(tin[u],-);
f[typ[u]].ins(tout[u]+,);
typ[u] = min(,typ[u]*k);
f[typ[u]].ins(tin[u],);
f[typ[u]].ins(tout[u]+,-);
dealb(get_las(fa[u]),k,lim);
if(typ[u]==)las[u]=fa[u];
}
int main()
{
// freopen("yuyuko.in","r",stdin);
// freopen("yuyuko.out","w",stdout);
init();
scanf("%d",&n);
for(int ff,t,i=;i<n;i++)
{
scanf("%d%d",&ff,&t);
ae(ff,t),ae(t,ff);
}
dfs1(,),dfs2(,);
scanf("%d",&q);
for(int l,r,k,i=;i<=q;i++)
{
scanf("%s",ch+);
if(ch[]=='Q')
{
scanf("%d%d",&l,&r);
int lca = get_lca(l,r);
int ff = fa[lca];
double ans = 0.0;
for(int j=;j<;j++)
{
int sum = f[j].qry(tin[l])+f[j].qry(tin[r])-f[j].qry(tin[lca])-f[j].qry(tin[ff]);
ans+=(double)sum*num[j];
}
printf("%.1lf\n",ans);
}else
{
scanf("%d%d%d",&l,&r,&k);
int lca = get_lca(l,r);
if(ch[]=='A')
{
deala(las[l],k,dep[lca]);
deala(las[r],k,dep[lca]-);
}else
{
dealb(las[l],k,dep[lca]);
dealb(las[r],k,dep[lca]-);
}
}
}
return ;
}
NOIp模拟赛 西行妖下的更多相关文章
- NOIP模拟赛20161022
NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...
- NOIP模拟赛 by hzwer
2015年10月04日NOIP模拟赛 by hzwer (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...
- 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程
数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...
- 【noip模拟赛5】细菌 状压dp
[noip模拟赛5]细菌 描述 近期,农场出现了D(1<=D<=15)种细菌.John要从他的 N(1<=N<=1,000)头奶牛中尽可能多地选些产奶.但是如果选中的奶牛携 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护
线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...
- 2016-06-19 NOIP模拟赛
2016-06-19 NOIP模拟赛 by coolyangzc 共3道题目,时间3小时 题目名 高级打字机 不等数列 经营与开发 源文件 type.cpp/c/pas num.cpp/c ...
随机推荐
- node+ws模块实现websocket
先来吐槽一下,想要找点技术文章真tm不容易,全是jb复制粘贴,还冒充原创.搜索一个ws实现websocket全是一样的.一个字都没变,我能说什么.最后想到搜索ws模块githup居然前两页没有,也是那 ...
- Tinkoff Challenge - Elimination Round C. Mice problem(模拟)
传送门 题意 给出一个矩形的左下角和右上角的坐标,给出n个点的初始坐标和运动速度和方向,询问是否存在一个时间使得所有点都在矩形内,有则输出最短时间,否则输出-1 分析 对于每个点如果运动过程中都不在矩 ...
- poj 1149 PIGS【最大流】
建图:s向所有猪圈的第一个顾客连流量为这个猪圈里住的数量,然后对于之后每个来这个猪圈的顾客,由他前一个顾客向他连边权为无穷的边,然后每个顾客向t连流量为这个顾客购买上限的边.然后跑最大流 #inclu ...
- 2018SCin tsyzDay1 模拟赛-模拟
预计得分:70+0+0+100+100+100+100=470 实际得分:70+0+0+30+100+0+40=240 第一天就被模拟虐爆qwq T1 https://www.luogu.org/pr ...
- 图论/位运算 Codeforces Round #285 (Div. 2) C. Misha and Forest
题目传送门 /* 题意:给出无向无环图,每一个点的度数和相邻点的异或和(a^b^c^....) 图论/位运算:其实这题很简单.类似拓扑排序,先把度数为1的先入对,每一次少一个度数 关键在于更新异或和, ...
- Linux环境下ZooKeeper集群环境搭建关键步骤
ZooKeeper版本:zookeeper-3.4.9 ZooKeeper节点:3个节点 以下为Linux环境下ZooKeeper集群环境搭建关键步骤: 前提条件:已完成在Linux环境中安装JDK并 ...
- Zygote和System进程的启动过程、Android应用进程启动过程
1.基本过程 init脚本的启动Zygote Zygote进程的启动 System进程的启动 Android应用进程启动过程 2.init脚本的启动 +------------+ +-------+ ...
- 【转载】WebConfigurationManager和ConfigurationManager
原文链接 今天在写程序时偶然发现有的示例代码中是用WebConfigurationManager获取web.config中的配置信息的,因为之前一直都是用的ConfigurationManager,所 ...
- HBase Region Assign流程详解
Hbase是kv存储,但是逻辑上我们可以把存储在hbase上的kv数据当成表,rowkey可以认为是表的主键.为了便于分布式操作,hbase会把表横向切分成一块一块的数据,而每块就是一个Region. ...
- ftp 上传与下载
//上传 ftpmg.Upload("", DateTime.Now.ToString("yyyyMMddhhmmss")); //下载 ftpmg.Downl ...