原来这种题的解法是费用流。

从一个方格的左上走到右下,最多走k次,每个数最多拿走一次。

每次走动的流量设为1,起始点拆点成限制流量k。

每个点拆成两条路,一条路限制流量1,费用为价值相反数。另一条路无限流量。

跑一遍费用流。

#include<bits/stdc++.h>
using namespace std; const int MAXN=+;
const int MAXM=;
const int INF=0x3f3f3f3f;
struct Edge{
int to,next,cap,flow,cost;
}edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN]; int n;
void init(){
tol=;
memset(head,-,sizeof(head));
} void addedge(int u,int v,int cap,int cost){
edge[tol].to=v;
edge[tol].cap=cap;
edge[tol].cost=cost;
edge[tol].flow=;
edge[tol].next=head[u];
head[u]=tol++; edge[tol].to=u;
edge[tol].cap=;
edge[tol].cost=-cost;
edge[tol].flow=;
edge[tol].next=head[v];
head[v]=tol++;
} bool spfa(int s,int t){
queue<int> q;
memset(dis,INF,sizeof(dis));
memset(vis,false,sizeof(vis));
memset(pre,-,sizeof(pre)); dis[s]=;
vis[s]=true;
q.push(s);
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=false;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost){
dis[v]=dis[u]+edge[i].cost;
pre[v]=i;
if(!vis[v]){
vis[v]=true;
q.push(v);
}
}
}
}
if(pre[t]==-)
return false;
else
return true;
} int minCostMaxFlow(int s,int t,int &cost){
int flow=;
cost=;
while(spfa(s,t)){
int Min=INF;
for(int i=pre[t];i!=-;i=pre[edge[i^].to]){
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
}
for(int i=pre[t];i!=-;i=pre[edge[i^].to]){
edge[i].flow+=Min;
edge[i^].flow-=Min;
cost+=edge[i].cost*Min;
}
flow+=Min;
}
return flow;
} void show(int s){
bool vis[];
queue<int> q;
vis[s]=;
q.push(s);
while(!q.empty()){
int u=q.front();
q.pop();
cout<<"u="<<u<<endl;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(vis[v]==){
vis[v]=;
q.push(v);
}
}
}
cout<<endl;
} /* EK end */ int a[][]; int k; inline int getid(int i,int j,int isout){
return (i-)*n+j+isout*(n*n);
} int main(){
init();
scanf("%d%d",&n,&k); int si=*n*n+,so=*n*n+;
addedge(si,so,k,);//最多走k次
int t=*n*n+; for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
int c;
scanf("%d",&c);
addedge(getid(i,j,),getid(i,j,),,-c);
//拿走它,获得价值,费用是相反数
addedge(getid(i,j,),getid(i,j,),INF,);
//不拿就不拿呗
}
} for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i+<=n)
addedge(getid(i,j,),getid(i+,j,),INF,);
if(j+<=n)
addedge(getid(i,j,),getid(i,j+,),INF,);
}
} addedge(so,getid(,,),INF,);
addedge(getid(n,n,),t,INF,); //show(si); int cost=;
int flow=minCostMaxFlow(si,t,cost);
printf("%d\n",-cost); }

洛谷 - P2045 - 方格取数加强版 - 费用流的更多相关文章

  1. 洛谷P2045 方格取数加强版(费用流)

    题意 题目链接 Sol 这题能想到费用流就不难做了 从S向(1, 1)连费用为0,流量为K的边 从(n, n)向T连费用为0,流量为K的边 对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次, ...

  2. 洛谷 P2045 方格取数加强版【费用流】

        题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...

  3. 洛谷P2045 方格取数加强版 最小费用流

    Code: #include<cstdio> #include<cstring> #include<algorithm> #include<queue> ...

  4. [洛谷P2045]方格取数加强版

    题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0.这个人共取n次,求取得的数的最大总和. 解题思路 ...

  5. LG2045 方格取数加强版 费用流

    问题描述 LG2045 题解 费用流. 套路拆点,把\((i,j)\)拆为两个点,在这两个点之间连边:一条边流量为\(1\),费用为\(a_{i,j}\),另一条边为流量为\(INF\),费用为\(0 ...

  6. P2045 方格取数加强版

    P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...

  7. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  8. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  9. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

随机推荐

  1. Qt:解析命令行

    Qt从5.2版開始提供了两个类QCommandLineOption和QCommandLineParser来解析应用的命令行參数. 一.命令行写法 命令行:"-abc" 在QComm ...

  2. VLFeat中SIFT特征点检测

    本代码使用VLFeat库中的函数对一幅图像进行了SIFT检测 需要事先配置好VLFeat和OpenCV,VLFeat的配置参考前一篇博文,OpenCV的配置网上一大堆,自己去百度 #include & ...

  3. SIFT算法中DoG特征点的修正

    SIFT算法中,在DoG空间找到极值点后,需要对极值点进行修正,本文主要详细的讲解一下为什么需要修正,以及如何对极值点进行修正. 下图演示了二维函数离散空间得到的极值点与连续空间的极值点之间的差别 利 ...

  4. Linux启动过程笔记

    Linux启动过程 1.启动流程(BIOS->MBR:Boot Code->引导GRUB->载入内核->运行init->runlevel) 2./boot/grub/下有 ...

  5. error at ::0 can&#39;t find referenced pointcut pointCutName 错误解决方法

    Caused by: org.springframework.beans.factory.BeanCreationException: Could not autowire method: publi ...

  6. (转)typedef用法

    Typedef 声明有助于创建平台无关类型,甚至能隐藏复杂和难以理解的语法.不管怎样,使用 typedef 能为代码带来意想不到的好处,通过本文你可以学习用 typedef 避免缺欠,从而使代码更健壮 ...

  7. 云打印-Beta-凡事预则立

    凡事预则立 课程名称:软件工程1916|W(福州大学) 团队名称: 云打印 作业要求: 项目Beta冲刺(团队) 作业目标:Beta冲刺 团队队员 队员学号 队员姓名 个人博客地址 备注 221600 ...

  8. MapReduce简述、工作流程及新旧API对照

    什么是MapReduce? 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查而且数出有多少张是黑桃. MapReduce方法则是: 1. 给在座的全部玩家中分配这摞牌. 2. 让每一个玩家数自己手 ...

  9. css的书写规范,有哪些注意点

    一.框架为先,细节次之. 先写一些浮动,然后高与宽,然后再是细节方面的书写. 比如写一个浮动容器的样式,我们应该先让这个容器的框架被渲染出来,让大家看到基本的 网站框架.然后再再去渲染容器里面的内容. ...

  10. 利用Swoole实现PHP+websocket直播,即使通讯

    websocket Websocket只是一个网络通信协议,就像 http.ftp等都是网络通信的协议一样:相对于HTTP这种非持久的协议来说,Websocket是一个持久化网络通信的协议: WebS ...