题目链接:http://codeforces.com/problemset/problem/567/C

C. Geometric Progression
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer
k and a sequence a, consisting of
n integers.

He wants to know how many subsequences of length three can be selected from
a, so that they form a geometric progression with common ratio
k.

A subsequence of length three is a combination of three such indexes
i1, i2, i3, that
1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that
are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

A geometric progression with common ratio k is a sequence of numbers of the form
b·k0, b·k1, ..., b·kr - 1.

Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

Input

The first line of the input contains two integers, n and
k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

The second line contains n integers
a1, a2, ..., an ( - 109 ≤ ai ≤ 109)
— elements of the sequence.

Output

Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio
k.

Sample test(s)
Input
5 2
1 1 2 2 4
Output
4
Input
3 1
1 1 1
Output
1
Input
10 3
1 2 6 2 3 6 9 18 3 9
Output
6
Note

In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

题意:

给定一个数列,要求全部的子序列(顺序一定),是长度为3的等比数列(公比为K)的个数。

PS:

map。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <map>
#include <iostream>
using namespace std;
typedef long long LL; map<int, LL> s1, s2;
int main()
{
LL n, k;
LL ans, x;
cin >> n >> k;
ans = 0;
for(int i = 0; i < n; i++)
{
scanf("%I64d",&x);
if(x%k == 0)
{
LL t1 = s2[x/k];
ans += t1;
LL t2 = s1[x/k];
s2[x] += t2;
}
s1[x]++;
}
cout << ans << endl;
return 0;
}
/*
10 3
1 2 6 2 3 6 9 18 3 9
*/

CodeForces 567C. Geometric Progression(map 数学啊)的更多相关文章

  1. Codeforces 567C - Geometric Progression - [map维护]

    题目链接:https://codeforces.com/problemset/problem/567/C 题意: 给出长度为 $n$ 的序列 $a[1:n]$,给出公比 $k$,要求你个给出该序列中, ...

  2. CodeForces 567C Geometric Progression

    Geometric Progression Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I ...

  3. Codeforces 567C Geometric Progression(思路)

    题目大概说给一个整数序列,问里面有几个包含三个数字的子序列ai,aj,ak,满足ai*k*k=aj*k=ak. 感觉很多种做法的样子,我想到这么一种: 枚举中间的aj,看它左边有多少个aj/k右边有多 ...

  4. CodeForces 567C Geometric Progression 类似dp的递推统计方案数

    input n,k 1<=n,k<=200000 a1 a2 ... an 1<=ai<=1e9 output 数组中选三个数,且三个数的下标严格递增,凑成形如b,b*k,b* ...

  5. Codeforces Round #Pi (Div. 2) C. Geometric Progression map

    C. Geometric Progression Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  6. CF 567C Geometric Progression

    题目大意:输入两个整数 n 和 k ,接下来输入n个整数组成的序列.求该序列中三个数 满足条件的子串个数(要求字串由三个整数a,b,c组成,其中 c = k * b = k * k * a). 思路: ...

  7. map Codeforces Round #Pi (Div. 2) C. Geometric Progression

    题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...

  8. Codeforces 567C:Geometric Progression(DP)

    time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...

  9. Codeforces Round #Pi (Div. 2) C. Geometric Progression

    C. Geometric Progression time limit per test 1 second memory limit per test 256 megabytes input stan ...

随机推荐

  1. matlab自定义函数的五种表示(前2种重点)

    1.命令文件/函数文件+函数文件:多个M文件 2.函数文件+子函数:一个M文件 3. inline:无需M文件 4.符号表达式+subs方式:无需M文件 5.字符串+subs方式:无需M文件 第一种: ...

  2. luogu4035 [JSOI2008]球形空间产生器

    如果单按照距离相等的话既是高次也没有半径,所以因为给了 \(n+1\) 组点就想到两两做差. 假如一组点是 \(\{a_i\}\) 一组是 \(\{b_i\}\),我们能轻易地得出 \[\sum_{i ...

  3. URAL 2040 Palindromes and Super Abilities 2

    Palindromes and Super Abilities 2Time Limit: 500MS Memory Limit: 102400KB 64bit IO Format: %I64d &am ...

  4. PTA 05-树8 File Transfer (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/670 5-8 File Transfer   (25分) We have a netwo ...

  5. 舆论的力量---数学建模初探(SI模型)

    在高中时除了物理竞赛没有学习外,竞赛的五大学科剩下的四门均有所涉猎及参加,因而精力分散太多.因此下定决心大学时可以广泛涉猎知识,但是主攻的竞赛只能有两个ACM和MCM,如今虽然高考完挂,但学术之心尚存 ...

  6. 【HDOJ6335】Nothing is Impossible(贪心)

    题意: 有n道题目m个人,每道题目有1个正确选项和a[i]个错误选项,每个人每道题只能选一个选项 求出最坏情况下分数最多的人至少能拿到几分 n<=1e2,m<=1e9,1<=b[i] ...

  7. Linux中命令选项及参数简介

    登录Linux后,我们就可以在#或$符后面去输入命令,有的时候命令后面还会跟着“选项”(英文options)或“参数”(英文arguments).即Linux中命令格式为: command [opti ...

  8. 转载:用vector保存对象时保存指针的优点, 以及reserve的使用

    #include <vector> #include <stdio.h> class A { public: A() { printf("A()/n"); ...

  9. python学习之-- importlib模块

    importlib 模块 Python提供了importlib包作为标准库的一部分.目的就是提供Python中import语句的实现(以及__import__函数).另外,importlib允许程序员 ...

  10. python学习之-- 面向对象

    面向对象(简写:OOP) 面向对象编程定义:利用类和对象来创建各种模型,来实现对真实世界的描述. 优点:使程序更容易理解和维护以及扩展代码. 类定义:用来描述具有相同的属性和方法的对象的集合.(简单讲 ...