生命周期监控,也就是死亡监控,是akka编程中常用的机制。比如我们有了某个actor的ActorRef之后,希望在该actor死亡之后收到响应的消息,此时我们就可以使用watch函数达到这一目的。

class WatchActor extends Actor {
val child = context.actorOf(Props.empty, "child")
context.watch(child) // <-- this is the only call needed for registration
var lastSender = context.system.deadLetters def receive = {
case "kill" ⇒
context.stop(child); lastSender = sender()
case Terminated(`child`) ⇒ lastSender ! "finished"
}
}

  我们从官网的一个例子入手,其实DeathWatch用起来还是非常方便的,就是调用context.watch,在对应的actor由于某种原因stop之后,就会收到Terminated消息,该消息只有一个参数,那就是stop的ActorRef。看起来简单,那具体是怎么实现的呢?

  /**
* Registers this actor as a Monitor for the provided ActorRef.
* This actor will receive a Terminated(subject) message when watched
* actor is terminated.
*
* `watch` is idempotent if it is not mixed with `watchWith`.
*
* It will fail with an [[IllegalStateException]] if the same subject was watched before using `watchWith`.
* To clear the termination message, unwatch first.
*
* *Warning*: This method is not thread-safe and must not be accessed from threads other
* than the ordinary actor message processing thread, such as [[java.util.concurrent.CompletionStage]] and [[scala.concurrent.Future]] callbacks.
*
* @return the provided ActorRef
*/
def watch(subject: ActorRef): ActorRef

  上面是ActorContex关于watch的官方注释,非常简单,就是watch一个actor,然后就会收到对应的Terminated消息,还说这个方法不是线程安全的。

  如果读者看过我之前的源码分析文章的话,一定知道context就是ActorContext的实例,而ActorContext是ActorCell的一个功能截面,那么watch函数的具体实现应该就是在ActorCell里面了。由于ActorCell实现的接口比较多,就不再具体分析如何找到watch实现在哪个类了,直接告诉答案:dungeon.DeathWatch。

private[akka] trait DeathWatch { this: ActorCell ⇒

  首先它是一个自我类型限定的trait,这种方式我之前吐槽过这里就不展开说了,来看看watch如何实现的。

override final def watch(subject: ActorRef): ActorRef = subject match {
case a: InternalActorRef ⇒
if (a != self) {
if (!watchingContains(a))
maintainAddressTerminatedSubscription(a) {
a.sendSystemMessage(Watch(a, self)) // ➡➡➡ NEVER SEND THE SAME SYSTEM MESSAGE OBJECT TO TWO ACTORS ⬅⬅⬅
updateWatching(a, None)
}
else
checkWatchingSame(a, None)
}
a
}

  从上面源码可以分析出几个简单的技术点:1、不能watch自身;2、如果已经被监控则调用checkWatchingSame;3、没有被监控过,就给被监控的actor发送Watch整个系统消息;4、没有监控过则更新监控信息。

/**
* This map holds a [[None]] for actors for which we send a [[Terminated]] notification on termination,
* ``Some(message)`` for actors for which we send a custom termination message.
*/
private var watching: Map[ActorRef, Option[Any]] = Map.empty
  //   when all actor references have uid, i.e. actorFor is removed
private def watchingContains(subject: ActorRef): Boolean =
watching.contains(subject) || (subject.path.uid != ActorCell.undefinedUid &&
watching.contains(new UndefinedUidActorRef(subject)))

  判断是否已经监控过,这个具体实现比较有意思,watching是一个Map,首先判断Map中是否需包含该ActorRef;如果不包含该ActorRef,就去判断有没有UID,有UID则创建一个UndefinedUidActorRef,再去watching中判断是否包含。难道不奇怪么?既然都不包含了,创建一个UndefinedUidActorRef就有可能包含了?谁说不是呢,哈哈。其实也不是。我们来看看ActorRef是如何定义equals的。

/**
* Equals takes path and the unique id of the actor cell into account.
*/
final override def equals(that: Any): Boolean = that match {
case other: ActorRef ⇒ path.uid == other.path.uid && path == other.path
case _ ⇒ false
}

  上面源码逻辑比较清晰,如果两个ActorRef相等,则一定是path相等,且对应的uid相等。ActorPath的判等就不再分析了,肯定是各个层次相同喽。

  那么有没有可能path相同,而uid不同呢?当然可能了,如果一个actor被stop之后,再用相同的actorOf参数创建呢?此时uid是不同的,而path是相同的。

private[akka] class UndefinedUidActorRef(ref: ActorRef) extends MinimalActorRef {
override val path = ref.path.withUid(ActorCell.undefinedUid)
override def provider = throw new UnsupportedOperationException("UndefinedUidActorRef does not provide")
}

  UndefinedUidActorRef就是与原ActorRef路径相同,而uid是ActorCell.undefinedUid的一个新的ActorRef。

  maintainAddressTerminatedSubscription,它会判断是不是本地actor,如果是本地actor则调用后面的block,对于远程actor会有一些特殊操作,这里不再分析。

  private def updateWatching(ref: InternalActorRef, newMessage: Option[Any]): Unit =
watching = watching.updated(ref, newMessage)

  updateWatching比较简单,就是把要watch的actorRef插入到watching这个Map中去。你要问我这个ActorRef在Map中对应的value是啥,我也是拒绝回答的,你可以看看watchWith的用法,这里不再分析。下面我们来分析一下被监控的Actor收到Watching之后是如何做响应的。

case Watch(watchee, watcher) ⇒ addWatcher(watchee, watcher)

  它命中了ActorCell.systemInvoke中的以上分支。

protected def addWatcher(watchee: ActorRef, watcher: ActorRef): Unit = {
val watcheeSelf = watchee == self
val watcherSelf = watcher == self if (watcheeSelf && !watcherSelf) {
if (!watchedBy.contains(watcher)) maintainAddressTerminatedSubscription(watcher) {
watchedBy += watcher
if (system.settings.DebugLifecycle) publish(Debug(self.path.toString, clazz(actor), s"now watched by $watcher"))
}
} else if (!watcheeSelf && watcherSelf) {
watch(watchee)
} else {
publish(Warning(self.path.toString, clazz(actor), "BUG: illegal Watch(%s,%s) for %s".format(watchee, watcher, self)))
}
}

  正常情况下,会命中第一个if的第一个分支的代码,其实也比较简答,就是去watchedBy里面查找是否保存过watcher,如果没有就把它加到watchedBy里面。

private var watchedBy: Set[ActorRef] = ActorCell.emptyActorRefSet

  watchedBy是一个set,也就是里面的ActorRef不重复。那如果这个actor被stop之后,啥时候通知对应的watchedBy呢?这个问题其实还是满复杂的。

  如果想知道什么时候通知了watchedBy,就需要知道stop的逻辑,那么ActorCell的stop是如何实现的呢?

// ➡➡➡ NEVER SEND THE SAME SYSTEM MESSAGE OBJECT TO TWO ACTORS ⬅⬅⬅
final def stop(): Unit = try dispatcher.systemDispatch(this, Terminate()) catch handleException

  stop在Dispatch这个trait里面实现,很简单,它又用当前dispatcher发送了一个Terminate消息给自己。

case Terminate() ⇒ terminate()

  收到Terminate消息后,调用了terminate方法。

protected def terminate() {
setReceiveTimeout(Duration.Undefined)
cancelReceiveTimeout // prevent Deadletter(Terminated) messages
unwatchWatchedActors(actor) // stop all children, which will turn childrenRefs into TerminatingChildrenContainer (if there are children)
children foreach stop if (systemImpl.aborting) {
// separate iteration because this is a very rare case that should not penalize normal operation
children foreach {
case ref: ActorRefScope if !ref.isLocal ⇒ self.sendSystemMessage(DeathWatchNotification(ref, true, false))
case _ ⇒
}
} val wasTerminating = isTerminating if (setChildrenTerminationReason(ChildrenContainer.Termination)) {
if (!wasTerminating) {
// do not process normal messages while waiting for all children to terminate
suspendNonRecursive()
// do not propagate failures during shutdown to the supervisor
setFailed(self)
if (system.settings.DebugLifecycle) publish(Debug(self.path.toString, clazz(actor), "stopping"))
}
} else {
setTerminated()
finishTerminate()
}
}

  terminate方法,逻辑清晰,它会通知子actor进行stop。那么子actor是如何stop的呢?

final def stop(actor: ActorRef): Unit = {
if (childrenRefs.getByRef(actor).isDefined) {
@tailrec def shallDie(ref: ActorRef): Boolean = {
val c = childrenRefs
swapChildrenRefs(c, c.shallDie(ref)) || shallDie(ref)
} if (actor match {
case r: RepointableRef ⇒ r.isStarted
case _ ⇒ true
}) shallDie(actor)
}
actor.asInstanceOf[InternalActorRef].stop()
}

  其实比较简单,就是判断当前actor是否存在,若存在且已经启动则调用swapChildrenRefs,最后调用这个子actor的stop()方法,进行递归stop。

override def shallDie(actor: ActorRef): ChildrenContainer = TerminatingChildrenContainer(c, Set(actor), UserRequest)

  shallDie其实就是创建一个TerminatingChildrenContainer,然后去替换childrenRefs。

@tailrec final protected def setChildrenTerminationReason(reason: ChildrenContainer.SuspendReason): Boolean = {
childrenRefs match {
case c: ChildrenContainer.TerminatingChildrenContainer ⇒
swapChildrenRefs(c, c.copy(reason = reason)) || setChildrenTerminationReason(reason)
case _ ⇒ false
}
}

  最后一个if语句会调用setChildrenTerminationReason,此时childrenRefs已经是TerminatingChildrenContainer类型的了,所以会返回true。

private def finishTerminate() {
val a = actor
/* The following order is crucial for things to work properly. Only change this if you're very confident and lucky.
*
* Please note that if a parent is also a watcher then ChildTerminated and Terminated must be processed in this
* specific order.
*/
try if (a ne null) a.aroundPostStop()
catch handleNonFatalOrInterruptedException { e ⇒ publish(Error(e, self.path.toString, clazz(a), e.getMessage)) }
finally try dispatcher.detach(this)
finally try parent.sendSystemMessage(DeathWatchNotification(self, existenceConfirmed = true, addressTerminated = false))
finally try stopFunctionRefs()
finally try tellWatchersWeDied()
finally try unwatchWatchedActors(a) // stay here as we expect an emergency stop from handleInvokeFailure
finally {
if (system.settings.DebugLifecycle)
publish(Debug(self.path.toString, clazz(a), "stopped")) clearActorFields(a, recreate = false)
clearActorCellFields(this)
actor = null
}
}

  所以最终会调用finishTerminate,在finishTerminate代码中会去调用tellWatchersWeDied

protected def tellWatchersWeDied(): Unit =
if (!watchedBy.isEmpty) {
try {
// Don't need to send to parent parent since it receives a DWN by default
def sendTerminated(ifLocal: Boolean)(watcher: ActorRef): Unit =
if (watcher.asInstanceOf[ActorRefScope].isLocal == ifLocal && watcher != parent)
watcher.asInstanceOf[InternalActorRef].sendSystemMessage(DeathWatchNotification(self, existenceConfirmed = true, addressTerminated = false)) /*
* It is important to notify the remote watchers first, otherwise RemoteDaemon might shut down, causing
* the remoting to shut down as well. At this point Terminated messages to remote watchers are no longer
* deliverable.
*
* The problematic case is:
* 1. Terminated is sent to RemoteDaemon
* 1a. RemoteDaemon is fast enough to notify the terminator actor in RemoteActorRefProvider
* 1b. The terminator is fast enough to enqueue the shutdown command in the remoting
* 2. Only at this point is the Terminated (to be sent remotely) enqueued in the mailbox of remoting
*
* If the remote watchers are notified first, then the mailbox of the Remoting will guarantee the correct order.
*/
watchedBy foreach sendTerminated(ifLocal = false)
watchedBy foreach sendTerminated(ifLocal = true)
} finally {
maintainAddressTerminatedSubscription() {
watchedBy = ActorCell.emptyActorRefSet
}
}
}

  tellWatchersWeDied做了什么呢?其实就是给watchedBy对应的actorRef发送DeathWatchNotification消息。请注意DeathWatchNotification的第一个参数是self,就是要stop的actor。

case DeathWatchNotification(a, ec, at) ⇒ watchedActorTerminated(a, ec, at)

  而watcher收到DeathWatchNotification如何响应呢?

/**
* When this actor is watching the subject of [[akka.actor.Terminated]] message
* it will be propagated to user's receive.
*/
protected def watchedActorTerminated(actor: ActorRef, existenceConfirmed: Boolean, addressTerminated: Boolean): Unit = {
watchingGet(actor) match {
case None ⇒ // We're apparently no longer watching this actor.
case Some(optionalMessage) ⇒
maintainAddressTerminatedSubscription(actor) {
watching = removeFromMap(actor, watching)
}
if (!isTerminating) {
self.tell(optionalMessage.getOrElse(Terminated(actor)(existenceConfirmed, addressTerminated)), actor)
terminatedQueuedFor(actor)
}
}
if (childrenRefs.getByRef(actor).isDefined) handleChildTerminated(actor)
}

  很明显watchedActorTerminated在当前actor处于正常状态,且已经监控了对应的actor时,会给自己发送一个Terminated(actor),或者Terminated(actor,msg)的消息。这样监控者就收到了被监控actor的Terminated消息了。

  其实吧,抛开子actor状态的维护以及其他复杂的操作,简单来说就是,监控者保存自己监控了哪些actor,被监控者保存了自己被哪些actor监控了,在被监控者stop的最后一刻发送Terminated消息给监控者就好了。当然了,这还涉及到remote模式,此时就比较复杂,后面再分析。

Akka源码分析-local-DeathWatch的更多相关文章

  1. Akka源码分析-Cluster-Metrics

    一个应用软件维护的后期一定是要做监控,akka也不例外,它提供了集群模式下的度量扩展插件. 其实如果读者读过前面的系列文章的话,应该是能够自己写一个这样的监控工具的.简单来说就是创建一个actor,它 ...

  2. Akka源码分析-Cluster-Distributed Publish Subscribe in Cluster

    在ClusterClient源码分析中,我们知道,他是依托于“Distributed Publish Subscribe in Cluster”来实现消息的转发的,那本文就来分析一下Pub/Sub是如 ...

  3. Akka源码分析-Persistence

    在学习akka过程中,我们了解了它的监督机制,会发现actor非常可靠,可以自动的恢复.但akka框架只会简单的创建新的actor,然后调用对应的生命周期函数,如果actor有状态需要回复,我们需要h ...

  4. Akka源码分析-Cluster-ActorSystem

    前面几篇博客,我们依次介绍了local和remote的一些内容,其实再分析cluster就会简单很多,后面关于cluster的源码分析,能够省略的地方,就不再贴源码而是一句话带过了,如果有不理解的地方 ...

  5. Akka源码分析-Akka Typed

    对不起,akka typed 我是不准备进行源码分析的,首先这个库的API还没有release,所以会may change,也就意味着其概念和设计包括API都会修改,基本就没有再深入分析源码的意义了. ...

  6. Akka源码分析-Akka-Streams-概念入门

    今天我们来讲解akka-streams,这应该算akka框架下实现的一个很高级的工具.之前在学习akka streams的时候,我是觉得云里雾里的,感觉非常复杂,而且又难学,不过随着对akka源码的深 ...

  7. Akka源码分析-Cluster-Singleton

    akka Cluster基本实现原理已经分析过,其实它就是在remote基础上添加了gossip协议,同步各个节点信息,使集群内各节点能够识别.在Cluster中可能会有一个特殊的节点,叫做单例节点. ...

  8. Akka源码分析-Akka-Streams-Materializer(1)

    本博客逐步分析Akka Streams的源码,当然必须循序渐进,且估计会分很多篇,毕竟Akka Streams还是比较复杂的. implicit val system = ActorSystem(&q ...

  9. Akka源码分析-Cluster-Sharding

    个人觉得akka提供的cluster工具中,sharding是最吸引人的.当我们需要把actor分布在不同的节点上时,Cluster sharding非常有用.我们可以使用actor的逻辑标识符与ac ...

随机推荐

  1. MFC 课程总结

    <基于MFC框架开发>马志国 1491989781 MFC课程的组成 1.1 MFC应用程序的组成部分.执行机制和执行流程(10.5天). 1.2 Windows平台上的数据库访问技术(1 ...

  2. UVA-1572 Self-Assembly(拓扑排序判断有向环)

    题目: 给出几种正方形,每种正方形有无穷多个.在连接的时候正方形可以旋转.翻转. 正方形的每条边上都有一个大写英文字母加‘+’或‘-’.00,当字母相同符号不同时,这两条边可以相连接,00不能和任何边 ...

  3. Window下的———JDK环境的配置

    1.先把JDK文件解压在一个文件夹里 2.去到 3.具体配置3个 具体按照这样文件路径配置.(CLASSPATH 需要添加一个   . ;加路径    ) 4.最后检验 显示出JDK版本号就表示配置成 ...

  4. TestNG忽略测试

    用@Test(enabled = false) 声明需要被忽略执行的测试方法 package com.janson; import org.testng.annotations.Test; publi ...

  5. Python函数: any()和all()的用法

    版权声明:本文为博主原创文章,未经允许不得转载 引子 平常的文本处理工作中,我经常会遇到这么一种情况:用python判断一个string是否包含一个list里的元素. 这时候使用python的内置函数 ...

  6. 使用Mybatis进行连表查询、left join---https://blog.csdn.net/jinzhencs/article/details/51980518

    使用Mybatis进行连表查询.left join https://blog.csdn.net/jinzhencs/article/details/51980518

  7. Minimal string 栈 贪心

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  8. ZMQ源代码分析(一)-- 基础数据结构的实现

    yqueue 和 ypipe zmq号称是"史上最快的消息队列",由此可见zmq中最重要的数据结构就是队列. zmq的队列主要由yqueue和ypipe实现.yqueue是队列的基 ...

  9. Alcatel OmniSwitch 重置密码

    OmniSwitch 6250重置密码 Press s to STOP AT MINIBOOT... [Miniboot]->cd "network" value = 0 = ...

  10. Git flow的分支模型与及经常使用命令简单介绍

    Git flow是git的一个扩展集,它基于Vincent Driessen 的分支模型,文章"A successful Git branching model"对这一分支模型进行 ...