11082 完全二叉树的种类

时间限制:800MS  内存限制:1000K
提交次数:0 通过次数:0

题型: 编程题   语言: G++;GCC;VC

Description

构造n个(2<=n<=20)叶结点的的完全二叉树(完全二叉树意味着每个分支结点都有2个儿子结点),有多少种构造方法?

注意:不改变n个结点的相对顺序,左右儿子不调换.

例如:
4个叶子节点A1,A2,A3,A4,可构造出如下完全二叉树,共5种。

再例如:5个叶子结点,A1,A2,A3,A4,A5,可构造出如下若干种完全二叉树形状,像这样的完全二叉树共有14种(下图
并未全部列出)。

输入格式

输入n,表示构造的完全二叉树有n个叶结点(2<=n<=20)。

输出格式

输出构造的完全二叉树的种类。

输入样例

5

输出样例

14

提示

作者

zhengchan  

  

  题解:

  首先看一般的递推公式:题目规定是构造完全二叉树,那么不论怎么构造,根节点的左子树和右子树也都是完全二叉树。那么含有n个叶子的完全二叉树的构造方案数就等于左子树的方案数乘以右子树的方案数。列举所有左右子树的分布情况;得到公式f(n)=f(1)f(n-1)+f(2)f(n-2)+...+f(i)f(n-i)+...+f(n-1)f(1). 复杂度为O(n^2),不仅复杂度不低,而且实现较复杂,递归时还得用额外的空间记录已经计算过的值。

  现在从另一个角度分析。先假设取一个最小结点单位(即一个结点下接两个叶子)。 然后构造一棵含有n-1个叶子的完全二叉树;再将刚提到的最下结点单位替换n-1个叶子中的任何一个,就是一棵含有n个叶子的完全二叉树,这种情况的方案数为f(2)f(n-1)*(n-1)。 以此类推所有情况可得出n个叶子的完全二叉树方案数有:f(2)f(n-1)*(n-1)+f(3)f(n-2)*(n-2)+...+f(i)f(n-i+1)*(n-i+1)+...+f(n-1)f(2)*2。 把首尾合并得:f(2)f(n-1)*(n+1)+f(3)f(n-2)*(n+1)+...+f(i)f(n-i+1)*(n+1) | i<=n/2.  但这并不是正确的f(n)公式,因为没有去除重复的情况。 在n>3时这个式子是一定只有n-2项的(指没首尾合并前),而每一项的情况都会在其他的n-3项中重复一次(如果不清楚可以实际画f(4)或f(5)的情况看下)。 所以要除以重复的n-2。 那么最终得到公式f(n)=[f(2)f(n-1)+f(3)f(n-2)+...+f(i)f(n-i+1)]*(n+1)/(n-2) | i<=n/2。

  现在看会最开始的那个公式,将n+1代入得:f(n+1)=f(1)f(n)+f(2)f(n-1)+...+f(i)f(n-i+1)+...f(n)f(1)。 去掉首尾的f(1)f(n)和f(n)f(1)。中间的这个式子,正好就是后面推的f(n)公式大括号部分的“一半”。将该部分乘以二则有f(2)f(n-1)+...+f(i)f(n-i+1)+...+f(n-1)f(2)=f(n)*2(n-2)/(n+1)。  由f(1)=1,所以f(n+1)=2f(n)+f(n)*2(n-2)/(n+1).  最后化简得到公式f(n)=f(n-1)*(4n-6)/n.

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <cstdlib>
using namespace std;
typedef long long ll; ll catalan(int n)
{
if(n==)return ;
return catalan(n-)*(*n-)/n;
}
int main()
{
int n;
scanf("%d",&n);
printf("%lld\n",catalan(n));
return ;
}

11082 完全二叉树的种类 O(n) 卡特兰数的更多相关文章

  1. Buy the Ticket HDU 1133 卡特兰数应用+Java大数

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

  2. HDU 6084 寻找母串(卡特兰数)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6084 [题目大意] 对于一个串S,当它同时满足如下条件时,它就是一个01偏串: 1.只由0和1两种 ...

  3. [LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析

    本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵 ...

  4. [LeetCode]96. 不同的二叉搜索树(DP,卡特兰数)

    题目 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1 \ ...

  5. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  6. 卡特兰数(Catalan)

    卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, ...

  7. NOIP2003pj栈[卡特兰数]

    题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何 ...

  8. 卡特兰数 (Catalan)

    卡特兰数:(是一个在计数问题中出现的数列) 一般项公式: 1.         或       2.   递归公式: 1.  或 2. 注:全部可推导. (性质:Cn为奇数时,必然出现在奇数项 2k- ...

  9. HDU 5673 Robot ——(卡特兰数)

    先推荐一个关于卡特兰数的博客:http://blog.csdn.net/hackbuteer1/article/details/7450250. 卡特兰数一个应用就是,卡特兰数的第n项表示,现在进栈和 ...

随机推荐

  1. Android基础夯实--重温动画(一)之Tween Animation

    心灵鸡汤:真正成功的人生,不在于成就的大小,而在于你是否努力地去实现自我,喊出自己的声音,走出属于自己的道路. 摘要 不积跬步,无以至千里:不积小流,无以成江海.学习任何东西我们都离不开扎实的基础知识 ...

  2. 【转】jvm内存结构

    JVM的基本结构 包括四部分:类加载器.执行引擎.内存区(运行时数据区).本地方法接口 类加载器:jvm启动时或类运行时将需要的class文件加载到JVM中. JVM内存申请过程如下: JVM 会试图 ...

  3. Spartan6系列之芯片配置模式详解

    1.   配置概述 Spartan6系列FPGA通过把应用程序数据导入芯片内部存储器完成芯片的配置.Spart-6 FPGA可以自己从外部非易失性存储器导入编程数据,或者通过外界的微处理器.DSP等对 ...

  4. 在自学css开始就遇到问题,“链入外部样式表”在多浏览器显示问题

    在自学css开始就遇到问题,“链入外部样式表”的习题,代码如下:A.被链入的CSS文件代码.css<style  type="text/css"><!--h1{b ...

  5. bootstrap datatable 数据刷新问题

    在项目中,页面初始化的时候,通过通过向后台请求数据,页面初始化完之后,datatable是有数据的,当我点击页面的搜索按钮(按照时间过滤数据),datatable的数据要能重新刷新或者重载:这一点,我 ...

  6. Call stack-函数调用栈

    https://en.wikipedia.org/wiki/Call_stack#STACK-FRAME In computer science, a call stack is a stack da ...

  7. js异步请求

    目前async / await特性并没有被添加到ES2016标准中,但不代表这些特性将来不会被加入到Javascript中.在我写这篇文章时,它已经到达第三版草案,并且正迅速的发展中.这些特性已经被I ...

  8. Apache Maven 3.0.3 (yum) 安裝 (CentOS 6.4 x64)

    介紹http://maven.apache.org/ Maven是一個專案的開發,管理和綜合工具. 下載http://maven.apache.org/download.cgi 參考http://ma ...

  9. Docker 的基本使用

    一.简介 Docker 是一个开源的应用容器引擎,基于 Go 语言.Docker 支持将软件编译成一个镜像,然后在镜像中为软件做好配置,将镜像发布出去,其他使用者就可以直接使用这个镜像,而不需再和以前 ...

  10. 反片语(Ananagrams,Uva 156)

    输入一些单词,找出所有满足如下条件的单词:该单词不能通过字母重排,得到输入文 本中的另外一个单词.在判断是否满足条件时,字母不分大小写,但在输出时应保留输入中 的大小写,按字典序进行排列(所有大写字母 ...