生成函数(母函数)

母函数又称生成函数。定义是给出序列:a0,a1,a2,...ak,...an,

那么函数G(x)=a0+a1*x+a2*x2+....+ak*x+...+an* xn  称为序列a0,a1,a2,.......ak,......的母函数(即生成函数)。

1. 问题 n=x1+x2+x3+...+xk有多少个非负整数解?这道题是学排列与组合的经典例题了。

把每组解的每个数都加1,就变成n+k=x1+x2+x3+...+xk的正整数解的个数了。

教材上或许会出现这么一个难听的名字叫“隔板法”:把n+k个东西排成一排,在n+k-1个空格中插入k-1个“隔板”。

答案我们总是知道的,就是C(n+k-1,k-1)。它就等于C(n+k-1,n)。

它关于n的生成函数是g(x)=1/(1-x)^k。

2. 这个公式非常有用,是把一个生成函数还原为数列的武器。而且还是核武器。1/(1-x)^n=1+C(n,1)x^1+C(n+1,2)x^2+C(n+2,3)x^3+...+C(n+k-1,k)x^k+...。

详情参考 百度百科  博客

找单词

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9784    Accepted Submission(s): 6805

Problem Description
假设有x1个字母A, x2个字母B,..... x26个字母Z,同时假设字母A的价值为1,字母B的价值为2,..... 字母Z的价值为26。那么,对于给定的字母,可以找到多少价值<=50的单词呢?单词的价值就是组成一个单词的所有字母的价值之和,比如,单词ACM的价值是1+3+14=18,单词HDU的价值是8+4+21=33。(组成的单词与排列顺序无关,比如ACM与CMA认为是同一个单词)。
 
Input
输入首先是一个整数N,代表测试实例的个数。
然后包括N行数据,每行包括26个<=20的整数x1,x2,.....x26.
 
Output
对于每个测试实例,请输出能找到的总价值<=50的单词数,每个实例的输出占一行。
 
Sample Input
2
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 2 6 2 10 2 2 5 6 1 0 2 7 0 2 2 7 5 10 6 10 2 10 6 1 9
 
Sample Output
7
379297
 
解析  相当于G(x)=(1++) (1+++…)…(1++…)  每一个多项式 i 有xi+1项  然后多项式乘法就好了
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" "<<endl;
using namespace std;
const int maxn= 1e2+;
const int inf = 0x3f3f3f3f;
typedef long long ll;
ll a[maxn],b[maxn];
int main()
{
int t;
cin>>t;
while(t--)
{
fillchar(a,);
fillchar(b,);
a[]=;
for(int i=;i<=;i++)
{
int x;
cin>>x;
for(int j=;j<=;j++)
{
for(int k=;k<=x&&(j+i*k<=);k++)
{
b[j+k*i]+=a[j];
} }
for(int j=;j<=;j++)
{
a[j]=b[j];
b[j]=;
}
}
ll ans=;
for(int i=;i<=;i++)
{
ans+=a[i];
}
cout<<ans<<endl;
}
}

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 25750    Accepted Submission(s): 17803

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
Sample Input
4
10
20
 
Sample Output
5
42
627
 
解析  这道题用母函数更裸一点 直接多项式乘法就好了  不过有一个递推的解法  记忆化一下就可以 减少很大计算量 或者dp
整数划分  还有一些其他的定理

递推法

根据n和m的关系,考虑下面几种情况:
(1)当n=1时,不论m的值为多少(m>0),只有一种划分,即{1};
(2)当m=1时,不论 的值为多少(n>0),只有一种划分,即{1,1,....1,1,1};
(3)当n=m时,根据划分中是否包含n,可以分为两种情况:
(a)划分中包含n的情况,只有一个,即{n};
(b)划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分;因此,f(n,n) = 1 + f(n, n - 1)。
(4)当n<=m时,由于划分中不可能出现负数,因此就相当于f(n,n);
(5)当n>m时,根据划分中是否包含m,可以分为两种情况:
(a)划分中包含 的情况,即{m,{x1,x2,x3,...,xi}},其中{x1,x2,x3,...,xi}的和为n-m,可能再次出现m,因此是(n-m)的m划分,因此这种划分个数为f(n-m,m;
(b)划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为f(n,m-1;因此,f(n,m)=f(n-m,m)+f(n,m-1) 。
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" "<<endl;
using namespace std;
const int maxn= 1e2+;
const int inf = 0x3f3f3f3f;
typedef long long ll;
ll a[maxn],b[maxn];
int main()
{
int n;
while(cin>>n)
{
fillchar(a,);
fillchar(b,);
a[]=;
for(int i=;i<=n;i++) //枚举第i个多项式 每一项的系数都为1
{
for(int j=;j<=n;j++) //保留x0----xn项
{
for(int k=;j+i*k<=n;k++) //枚举第i个多项式的每一项
{
b[j+k*i]+=a[j]; //b数组保存中间值
} }
for(int j=;j<=n;j++)
{
a[j]=b[j]; //b数组传值给a
b[j]=;
}
}
cout<<a[n]<<endl;
}
}
/*----------------------------------------------------------------------------------------*/
#include<bits/stdc++.h>
#define ll long long
using namespace std;
//记忆化递归法求解整数划分
ll ans[][];
ll GetPartitionCount(int n, int m)
{
if(ans[n][m]>)
return ans[n][m];
if (n == || m == )return ans[n][m]=;
if (n < m)return ans[n][m]=(GetPartitionCount(n, n));
if (n == m)return ans[n][m]=( + GetPartitionCount(n, n - ));
else return ans[n][m]=(GetPartitionCount(n - m, m) + GetPartitionCount(n, m - ));
} int main()
{
int n,m;
ll sum;
while (scanf("%d",&n)==)
{
memset(ans,,sizeof(ans));
m=n;
sum = GetPartitionCount(n, m);
printf("%lld\n", sum);
}
return ;
}

HDU 1028 整数拆分 HDU 2082 找单词 母函数的更多相关文章

  1. Ignatius and the Princess III HDU - 1028 || 整数拆分,母函数

    Ignatius and the Princess III HDU - 1028 整数划分问题 假的dp(复杂度不对) #include<cstdio> #include<cstri ...

  2. HDOJ 2082 找单词 (母函数)

    找单词 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. hdu,1028,整数拆分的理解

    #include"iostream"using namespace std;int main() { int n,i,j,k; int c[122],temp[122]; //c[ ...

  4. HDU 1028 整数拆分问题 Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. HDU 2082 找单词 (普通型 数量有限 母函数)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2082 找单词 Time Limit: 1000/1000 MS (Java/Others)    Me ...

  6. hdu acm 2082 找单词

    找单词 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. HDU 1028 Ignatius and the Princess III(母函数整数拆分)

    链接:传送门 题意:一个数n有多少种拆分方法 思路:典型母函数在整数拆分上的应用 /********************************************************** ...

  8. HDU 1028 Ignatius and the Princess III (生成函数/母函数)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  9. hdu2082 找单词 (母函数)

    找单词 题意: 中文题,考虑是不是要写个英文题意..(可惜英语水平不够  囧rz)                (题于文末) 知识点: 母函数(生成函数): 生成函数有普通型生成函数和指数型生成函数 ...

随机推荐

  1. Kali部署openvas初探与实践

    openvas安装 1.我用的清华大学的源,所以我把/etc/apt/source.list中下入如下源地址 #清华大学deb http://mirrors.tuna.tsinghua.edu.cn/ ...

  2. centos启用socks5服务

    直接在终端用 root 安装 *** 官方客户端 apt-get install python-pip -ypip install shadowsocks 然后编辑 /etc/shadowsocks. ...

  3. http响应头状态描述

    状态代码有三位数字组成,第一个数字定义了响应的类别,且有五种可能取值:1xx:指示信息--表示请求已接收,继续处理2xx:成功--表示请求已被成功接收.理解.接受3xx:重定向--要完成请求必须进行更 ...

  4. ECharts是我接触过的最优秀的可视化工具,也是进步最快的软件,希望它早日成为世界级的开源项目。

    ECharts的广泛网址: http://echarts.baidu.com/doc/example.html 零编程玩转图表: http://tushuo.baidu.com/?qq-pf-to=p ...

  5. centos 更换yum源 (解决下载慢的问题)

    先看有没有安装wget         wget -V 如果没有执行   yum -y install wget    进行安装 然后进行配置的备份 mv /etc/yum.repos.d/CentO ...

  6. zipkin 服务追踪

    服务追踪,就是对请求接口的追踪并保存. 在测试的过程中我们会发现,有时候,程序刚刚启动后,刷新几次,并不能看到任何数据,原因就是我们的spring-cloud-sleuth收集信息是有一定的比率的,默 ...

  7. springboot设置接口超时

    springboot 设置接口超时 1.配置文件 application.properties中加了,意思是设置超时时间为20000ms即20s, spring.mvc.async.request-t ...

  8. JS:输出9*9乘法表

    <html> <head> <title>9*9 multiplication table</title> </head> <body ...

  9. Java集合(五)--LinkedList源码解读

    首先看一下LinkedList基本源码,基于jdk1.8 public class LinkedList<E> extends AbstractSequentialList<E> ...

  10. OPENCV3 命名空间等变化

    CV_VERSION 表示的opencv的版本号 命名空间变化:  可以通过增加 #include <cv.h> 解决 1 直接去掉CV_ 前缀 1) nameWindow 函数    C ...