[LOJ6041雅礼集训2017]事情的相似度
题解
\(SAM+set\)启发式合并+扫描线
首先可以发现题目要求的就是查询结尾在一段区间内的\(LCS\)
这个显然就是\(SAM\)的\(parent\)树上的\(step[LCA]\)
我们可以对后缀自动机的每个节点\(u\)开一个\(set\)来维护\(endpos\)集合
然后对\(u\)的儿子的\(right\)集合启发式合并,\(u\)的儿子和\(u\)当前集合内的点的\(LCS\)就是\(step[u]\)
显然在贡献是相同的情况下距离越近的越有效
所以我们对于要合并的点的一个位置\(u\)只需要找这个位置的前驱和后继并加入点对即可
这样我们处理出了若干个\((x,y,v)\)的点对
那么对于一个询问\(l,r\)
有贡献的点对就是\(l\le x , r > y\)
所以我们就把所有的点对和询问按照右端点排序
每扫到一个点对\((x,y,v)\)
就把\(x\)位置加上\(v\)
查询就是查\(l\)位置之前的最大值
代码
#include<set>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int M = 400005 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
}
char s[M] ;
int n , m , tot ;
int Last , cnt ;
int fa[M] , st[M] , son[M][2] ;
int b[M] , c[M] , ans[M] ;
multiset < int > S[M] ;
struct Q {
int l , r , idx ;
} q[M] ;
struct Node {
int x , y , v ;
Node () { } ;
Node (int Tx , int Ty , int Tv) {
x = Tx , y = Ty , v = Tv ;
if(x > y) swap(x , y) ;
}
} pi[M * 10] ;
inline bool operator < (Q A , Q B) {
return A.r < B.r ;
}
inline bool operator < (Node A , Node B) {
return A.y < B.y ;
}
inline void Insert(int c) {
int np = ++ cnt , p = Last ; Last = np ; st[np] = st[p] + 1 ;
while(p && !son[p][c]) son[p][c] = np , p = fa[p] ;
if(!p) fa[np] = 1 ;
else {
int q = son[p][c] ;
if(st[q] == st[p] + 1) fa[np] = q ;
else {
int nq = ++ cnt ; st[nq] = st[p] + 1 ;
memcpy(son[nq] , son[q] , sizeof(son[q])) ;
fa[nq] = fa[q] ; fa[q] = fa[np] = nq ;
while(p && son[p][c] == q) son[p][c] = nq , p = fa[p] ;
}
}
}
struct BIT {
int c[M] ;
inline int lowbit(int k) { return (k & (-k)) ; }
inline void change(int k , int x) { while(k) c[k] = max(c[k] , x) , k -= lowbit(k) ; }
inline int query(int k) { int ret = 0 ; while(k <= n) ret = max( ret , c[k] ) , k += lowbit(k) ; return ret ; }
} T ;
inline void Solve() {
int lst = 1 ;
for(int i = 1 ; i <= m ; i ++) {
for(int j = lst ; j <= tot ; j ++) {
if(q[i].r >= pi[j].y) {
T.change(pi[j].x , pi[j].v) ;
lst = j + 1 ;
}
else break ;
}
ans[q[i].idx] = T.query(q[i].l) ;
}
}
int main() {
n = read() ; m = read() ;
scanf("%s",s + 1) ; Last = cnt = 1 ;
for(int i = 1 ; i <= n ; i ++) {
Insert(s[i] - '0') ;
S[Last].insert(i) ;
}
for(int i = 1 ; i <= cnt ; i ++) ++ c[st[i]] ;
for(int i = 1 ; i <= n ; i ++) c[i] += c[i - 1] ;
for(int i = cnt ; i >= 1 ; i --) b[c[st[i]] --] = i ;
for(int i = cnt , p ; i >= 1 ; i --) {
p = b[i] ;
if(!fa[p]) continue ;
if(S[fa[p]].size() < S[p].size())
swap(S[fa[p]] , S[p]) ;
set < int >::iterator it , nw , pre , nxt ;
for(it = S[p].begin() ; it != S[p].end() ; ++it) {
S[fa[p]].insert(*it) ;
nw = pre = nxt = S[fa[p]].find(*it) ; ++ nxt ;
if(pre != S[fa[p]].begin()) -- pre , pi[++tot] = Node (*pre , *nw , st[fa[p]]) ;
if(nxt != S[fa[p]].end()) pi[++tot] = Node (*nw , *nxt , st[fa[p]]) ;
S[fa[p]].erase(*it) ;
}
for(it = S[p].begin() ; it != S[p].end() ; ++it)
S[fa[p]].insert(*it) ;
}
for(int i = 1 ; i <= m ; i ++)
q[i].idx = i , q[i].l = read() , q[i].r = read() ;
sort(q + 1 , q + m + 1) ;
sort(pi + 1 , pi + tot + 1) ;
Solve() ;
for(int i = 1 ; i <= m ; i ++)
printf("%d\n",ans[i]) ;
return 0 ;
}
[LOJ6041雅礼集训2017]事情的相似度的更多相关文章
- 「雅礼集训 2017 Day7」事情的相似度
「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...
- LOJ_6045_「雅礼集训 2017 Day8」价 _最小割
LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...
- 「雅礼集训 2017 Day2」解题报告
「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...
- 「雅礼集训 2017 Day1」 解题报告
「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...
- [LOJ 6031]「雅礼集训 2017 Day1」字符串
[LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...
- [LOJ 6030]「雅礼集训 2017 Day1」矩阵
[LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...
- [LOJ 6029]「雅礼集训 2017 Day1」市场
[LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...
- 【LYOI 212】「雅礼集训 2017 Day8」价(二分匹配+最大权闭合子图)
「雅礼集训 2017 Day8」价 内存限制: 512 MiB时间限制: 1000 ms 输入文件: z.in输出文件: z.out [分析] 蛤?一开始看错题了,但是也没有改,因为不会做. 一开 ...
- loj #6046. 「雅礼集训 2017 Day8」爷
#6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领 ...
随机推荐
- Enum to String 一般用法
目录 一.Enum Review 二.使用name()方法转换为String 三.使用toString()方法转换为String 四.使用成员属性转换为String 一.Enum Review J ...
- Codeforces Round #335 (Div. 2) 606B Testing Robots(模拟)
B. Testing Robots time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- 4. 基本TCP套接字编程
基本函数接口 socket函数 #include <sys/socket.h> int socket(int family, int type, int protocol); 成功时返回一 ...
- Andriod Atom x86模拟器启动报错。
用Inter Atom模式的Android模拟器启动报一下错误: Starting emulator for AVD 'new' emulator: ERROR: x86 emulation curr ...
- Linux搭建lnmp环境
在CentOS 6上使用yum安装lnmp服务,原文链接http://www.qiansw.com/yum-lnmp.html
- ios常用到的第三方库
在iOS开发中不可避免的会用到一些第三方类库,它们提供了很多实用的功能,使我们的开发变得更有效率:同时,也可以从它们的源代码中学习到很多有用的东西. Reachability 检测网络连接 用来检查网 ...
- xalion三层与Web开发帖子一览表 good
使用http.sys,让delphi 的多层服务飞起来(Delphi借用http.sys充当http服务器,也就可以发送返回JSON等信息,当然浏览器也可以使用)http://www.cnblogs. ...
- YTU 2444: C++习题 对象转换
2444: C++习题 对象转换 时间限制: 1 Sec 内存限制: 128 MB 提交: 914 解决: 581 题目描述 定义一个Teacher(教师)类(教师号,姓名,性别,薪金)和一个St ...
- os、sys和shutil模块
运行环境:python3 OS模块:os 模块提供了一个统一的操作系统的接口函数 下面的path指路径的意思 os.stat(file) #查询文件属性操作 os.sep #取代操作系统特定的路径分隔 ...
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...