【题目链接】

点击打开链接

【算法】

显然,越狱情况数 = 总情况数 - 不能越狱的情况数

很容易发现,总情况数 = M^N

不能越狱的情况数怎么求呢? 我们发现,不能越狱的情况,其实就是第一个人任选一种宗教,后面n-1个人,每个人都选

一种与前面一个人不同的宗教,所以第一个人有M种选法,后N-1个人,每个人都有M-1种选法,因此,不能越狱的情况

数 = M * (M - 1)^(N - 1)

所以,越狱情况数 = M ^ N - M * (M - 1)^(N - 1)

注意算乘方时,要用到快速幂

【代码】

#include<bits/stdc++.h>
using namespace std;
const long long MOD = ; long long n,m,ans1,ans2; template <typename T> inline void read(T &x) {
long long f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
template <typename T> inline void write(T x) {
if (x < ) { putchar('-'); x = -x; }
if (x > ) write(x/);
putchar(x%+'');
}
template <typename T> inline void writeln(T x) {
write(x);
puts("");
}
long long power(long long a,long long n) {
long long res;
if (n == ) return ;
if (n == ) return a % MOD;
res = power(a,n>>);
res = (res * res) % MOD;
if (n & ) res = res * a % MOD;
return res;
} int main() { read(m); read(n);
ans1 = power(m,n);
ans2 = ((m % MOD) * power(m-,n-)) % MOD;
writeln((ans1-ans2+MOD)%MOD); return ; }

【HNOI 2008】 越狱的更多相关文章

  1. [HNOI 2008]越狱

    Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果 相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 I ...

  2. [补档][HNOI 2008]GT考试

    [HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...

  3. 【BZOJ】【1008】【HNOI】越狱

    快速幂 大水题= = 正着找越狱情况不好找,那就反过来找不越狱的情况呗…… 总方案是$m^n$种,不越狱的有$m*(m-1)^{n-1}$种= = 负数搞搞就好了…… 莫名奇妙地T了好几发…… /** ...

  4. 【BZOJ 1005】【HNOI 2008】明明的烦恼

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 答案是\[\frac{(n-2)!}{(n-2-sum)!×\prod_{i=1}^{cnt} ...

  5. 【BZOJ 1043】【HNOI 2008】下落的圆盘 判断圆相交+线段覆盖

    计算几何真的好暴力啊. #include<cmath> #include<cstdio> #include<cstring> #include<algorit ...

  6. 【BZOJ 1007】【HNOI 2008】水平可见直线 解析几何

    之前机房没网就做的这道题,用的解析几何判断交点横坐标 #include<cmath> #include<cstdio> #include<cstring> #inc ...

  7. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  8. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. HNOI 2008:水平可见直线

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

随机推荐

  1. Flask 架构 --xunfeng实例研究

    文件结构 │ Config.py # 配置文件 │ README.md # 说明文档 │ Run.bat # Windows启动服务 │ Run.py # webserver │ Run.sh # L ...

  2. Android渲染器Shader:环状放射渐变渲染器RadialGradient(三)

     Android渲染器Shader:环状放射渐变渲染器RadialGradient(三) Android RadialGradient渲染器提供一种环状.发散.放射形状的渐变渲染器. 写一个例子: ...

  3. python+RobotFramework

    今天有人问我,她想在在robot里面用到数据库的一个值的随机数,但是不知道怎么实现,我用python写了一段代码链接数据库给表中所需的字段的值取随机数,代码如下: import random,pymy ...

  4. HDU 1278

    题目大意: 从(1,1)到(n,n),每经过一个点都要花费一定的时间,问花最短时间的路径有多少条 dfs+dp 先用bfs把所有到n花费的时间逆向dp计算一遍 再用dfs不断找到前一个对应的较短路径的 ...

  5. 洛谷P1432 倒水问题

    题目背景 In the movie "Die Hard 3", Bruce Willis and Samuel L. Jackson were confronted with th ...

  6. git push ‘No refs in common and none specified’doing nothing问题解决

    git push ‘No refs in common and none specified’doing nothing问题解决 输入git push origin master即可解决问题

  7. google play上获取apk文件

    先说一种测试不通过的方法(chrome浏览器添加Direct APK downloader拓展程序),浪费了我很多的时间,结果发现根本用不了,记录一下过程给大家参考. 使用chrome浏览器,点击左上 ...

  8. 2016 年末 QBXT 入学测试

    P4744 A’s problem(a) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试题,每三天结算一次成绩.参与享优惠 描述 这是一道有背 ...

  9. 【HDOJ6308】Time Zone(模拟)

    题意: 以"UTC+X'', "UTC-X'', "UTC+X.Y'', or "UTC-X.Y'' 四种格式给定当地时间,要求转换为北京时间 思路:Gold_ ...

  10. ACM-ICPC 2018 徐州赛区网络预赛 D 杜教筛 前缀和

    链接 https://nanti.jisuanke.com/t/31456 参考题解  https://blog.csdn.net/ftx456789/article/details/82590044 ...