【题目链接】

点击打开链接

【算法】

显然,越狱情况数 = 总情况数 - 不能越狱的情况数

很容易发现,总情况数 = M^N

不能越狱的情况数怎么求呢? 我们发现,不能越狱的情况,其实就是第一个人任选一种宗教,后面n-1个人,每个人都选

一种与前面一个人不同的宗教,所以第一个人有M种选法,后N-1个人,每个人都有M-1种选法,因此,不能越狱的情况

数 = M * (M - 1)^(N - 1)

所以,越狱情况数 = M ^ N - M * (M - 1)^(N - 1)

注意算乘方时,要用到快速幂

【代码】

#include<bits/stdc++.h>
using namespace std;
const long long MOD = ; long long n,m,ans1,ans2; template <typename T> inline void read(T &x) {
long long f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
template <typename T> inline void write(T x) {
if (x < ) { putchar('-'); x = -x; }
if (x > ) write(x/);
putchar(x%+'');
}
template <typename T> inline void writeln(T x) {
write(x);
puts("");
}
long long power(long long a,long long n) {
long long res;
if (n == ) return ;
if (n == ) return a % MOD;
res = power(a,n>>);
res = (res * res) % MOD;
if (n & ) res = res * a % MOD;
return res;
} int main() { read(m); read(n);
ans1 = power(m,n);
ans2 = ((m % MOD) * power(m-,n-)) % MOD;
writeln((ans1-ans2+MOD)%MOD); return ; }

【HNOI 2008】 越狱的更多相关文章

  1. [HNOI 2008]越狱

    Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果 相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 I ...

  2. [补档][HNOI 2008]GT考试

    [HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...

  3. 【BZOJ】【1008】【HNOI】越狱

    快速幂 大水题= = 正着找越狱情况不好找,那就反过来找不越狱的情况呗…… 总方案是$m^n$种,不越狱的有$m*(m-1)^{n-1}$种= = 负数搞搞就好了…… 莫名奇妙地T了好几发…… /** ...

  4. 【BZOJ 1005】【HNOI 2008】明明的烦恼

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 答案是\[\frac{(n-2)!}{(n-2-sum)!×\prod_{i=1}^{cnt} ...

  5. 【BZOJ 1043】【HNOI 2008】下落的圆盘 判断圆相交+线段覆盖

    计算几何真的好暴力啊. #include<cmath> #include<cstdio> #include<cstring> #include<algorit ...

  6. 【BZOJ 1007】【HNOI 2008】水平可见直线 解析几何

    之前机房没网就做的这道题,用的解析几何判断交点横坐标 #include<cmath> #include<cstdio> #include<cstring> #inc ...

  7. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  8. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. HNOI 2008:水平可见直线

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

随机推荐

  1. oc温习八:static、extern、const 的了解

    参考文章:http://www.cocoachina.com/ios/20161110/18035.html 1.const 这个单词翻译成中文是“常量”的意思.在程序中我们知道“常量”的值是不能变的 ...

  2. RabbitMQ最佳实践

    在使用消息机制时,我们通常需要考虑以下几个问题: 消息不能丢失 保证消息一定能投递到目的地 保证业务处理和消息发送/消费的一致性 本文以RabbitMQ为例,讨论如何解决以上问题. 消息持久化 如果希 ...

  3. bzoj4161 (k^2logn求线性递推式)

    分析: 我们可以写把转移矩阵A写出来,然后求一下它的特征多项式,经过手动计算应该是这样的p(x)=$x^k-\sum\limits_{i=1}^ka_i*x^{k-i}$ 根据Cayley-Hamil ...

  4. Excel小tips - 设置指定可选填充内容

    数据——数据验证——设置——允许(A)——序列——来源 图1  数据验证界面 图2  选取序列数据字典 图3 效果展示 可以在同一个工作薄的同一个或者另一个工作表中设置指定内容(充当数据字典),然后点 ...

  5. Design Pattern Visitor 訪问者设计模式

    訪问者设计模式是已经有了一组Person对象了,然后不同的訪问者訪问这组对象.会有不同效果. 这些訪问者实际上就是一个能够让Person对象组运行的动作行为等. 至于这些Person对象是怎样运行这些 ...

  6. Md5扩展攻击的原理和应用

    *本文原创作者:Guilty and Innocent,本文属FreeBuf原创奖励计划,未经许可禁止转载 做CTF题目的过程中遇到了md5扩展攻击,参考了几篇文章,感觉写的都有些小缺陷,再发一篇文章 ...

  7. javascript闭包诡异的问题

    var funcs = []; for (var i = 0; i < 3; i++) { // let's create 3 functions funcs[i] = function() { ...

  8. Pierce振荡器设计

    一.Pierce振荡器电路 Inv:内部反相器,作用等同于放大器: Q:石英晶体或陶瓷晶振: RF:内部反馈电阻(使反相器工作在线性区): RExt:外部限流电阻(防止石英晶体被过分驱动): CL1. ...

  9. 游戏server设计的一些感悟

    Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csdn.net/chen19870707 Date:September 30 ...

  10. 大数据处理之道 (htmlparser获取数据&lt;一&gt;)

    一:简单介绍 (1)HTML Parser是一个用于解析Html的Java的库.可採用线性或嵌套两种方式.主要用于网页的转换或提取,他有一些特性:过滤器filter,遍历器visitors,通常的标签 ...