【题目链接】

点击打开链接

【算法】

显然,越狱情况数 = 总情况数 - 不能越狱的情况数

很容易发现,总情况数 = M^N

不能越狱的情况数怎么求呢? 我们发现,不能越狱的情况,其实就是第一个人任选一种宗教,后面n-1个人,每个人都选

一种与前面一个人不同的宗教,所以第一个人有M种选法,后N-1个人,每个人都有M-1种选法,因此,不能越狱的情况

数 = M * (M - 1)^(N - 1)

所以,越狱情况数 = M ^ N - M * (M - 1)^(N - 1)

注意算乘方时,要用到快速幂

【代码】

#include<bits/stdc++.h>
using namespace std;
const long long MOD = ; long long n,m,ans1,ans2; template <typename T> inline void read(T &x) {
long long f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
template <typename T> inline void write(T x) {
if (x < ) { putchar('-'); x = -x; }
if (x > ) write(x/);
putchar(x%+'');
}
template <typename T> inline void writeln(T x) {
write(x);
puts("");
}
long long power(long long a,long long n) {
long long res;
if (n == ) return ;
if (n == ) return a % MOD;
res = power(a,n>>);
res = (res * res) % MOD;
if (n & ) res = res * a % MOD;
return res;
} int main() { read(m); read(n);
ans1 = power(m,n);
ans2 = ((m % MOD) * power(m-,n-)) % MOD;
writeln((ans1-ans2+MOD)%MOD); return ; }

【HNOI 2008】 越狱的更多相关文章

  1. [HNOI 2008]越狱

    Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果 相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 I ...

  2. [补档][HNOI 2008]GT考试

    [HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...

  3. 【BZOJ】【1008】【HNOI】越狱

    快速幂 大水题= = 正着找越狱情况不好找,那就反过来找不越狱的情况呗…… 总方案是$m^n$种,不越狱的有$m*(m-1)^{n-1}$种= = 负数搞搞就好了…… 莫名奇妙地T了好几发…… /** ...

  4. 【BZOJ 1005】【HNOI 2008】明明的烦恼

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 答案是\[\frac{(n-2)!}{(n-2-sum)!×\prod_{i=1}^{cnt} ...

  5. 【BZOJ 1043】【HNOI 2008】下落的圆盘 判断圆相交+线段覆盖

    计算几何真的好暴力啊. #include<cmath> #include<cstdio> #include<cstring> #include<algorit ...

  6. 【BZOJ 1007】【HNOI 2008】水平可见直线 解析几何

    之前机房没网就做的这道题,用的解析几何判断交点横坐标 #include<cmath> #include<cstdio> #include<cstring> #inc ...

  7. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  8. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. HNOI 2008:水平可见直线

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

随机推荐

  1. hexo干货系列:(八)hexo文章自动隐藏侧边栏

    前言 使用Jacman主题的时候发现打开具体文章后,侧边栏还是会展示,我想要的效果是自动隐藏侧边栏,并且展示目录.但是当我修改了主题配置文件里面close_aside属性为true的时候,发现侧边栏隐 ...

  2. Codeforces225B - Well-known Numbers

    Portal Description 定义\(k\)-bonacci数列\(\{F_n\}\):\(F_i=0 \ (i<k),F_i=1 \ (i=k),F_i=\sum_{j=i-k}^{i ...

  3. 如何改变linux系统的只读文件的权限

    vim 编辑可以在命令模式输入 :wq! 保存退出可以用chmod 命令修改文件权限. chmod命令是非常重要的,用于改变文件或目录的访问权限.用户用它控制文件或目录的访问权限.该命令有两种用法.一 ...

  4. hdu 4971

    记忆花搜索   dp #include <cstdio> #include <cstdlib> #include <cmath> #include <set& ...

  5. 简论远程通信(RPC,Webservice,RMI,JMS的区别)

    RPC(Remote Procedure Call Protocol)RPC使用C/S方式,采用http协议,发送请求到服务器,等待服务器返回结果.这个请求包括一个参数集和一个文本集,通常形成“cla ...

  6. dtrace

    http://blog.csdn.net/lw1a2/article/details/7389323

  7. jsoup 提取 html 中的所有链接、图片和媒体

    原文:http://www.open-open.com/code/view/1420729333515 package org.jsoup.examples; import org.jsoup.Jso ...

  8. 分析PMT changed for the ROM:it must be downloaded.升级失败。

    应用场景描写叙述: 同样项目不同版本号(不同分支),使用Smart Phone Flash Tool工具交叉升级,出现PMT changed for the ROM;it must be downlo ...

  9. apc smart UPS下使用apcupsd注意事项

    公司的apc smart UPS安装有管理卡(似乎是AP-9631),server环境有FreeBSD.Windows Server.Linux(CentOS.Ubuntu) 实际使用中有例如以下问题 ...

  10. Effective C++ Item 27 少做转型操作

    本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie todo Item34 旧式转型 (T) expression 或 T (expressio ...