题目链接:

Balancing Act

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11845   Accepted: 4993

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

题意:

问给的一棵树的重心是哪个节点以及把这个节点去掉后连通块节点个数的最大值;

思路:

dfs,找出所有节点的子树节点的个数;再找出去掉这个节点后最大连通块的节点数更新答案就好了;

AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=2e5+;
const int maxn=; int n,son[N],ans,num;
vector<int>ve[N]; void dfs(int x,int fa)
{
int len=ve[x].size(),mmax=;
son[x]=;
for(int i=;i<len;i++)
{
int y=ve[x][i];
if(y==fa)continue;
dfs(y,x);
son[x]+=son[y];
if(son[y]>mmax)
mmax=son[y];
} int d=max(mmax,n-son[x]);
if(d<=num)
{
if(d==num)
{
if(x<ans)ans=x;
}
else ans=x;
num=d;
}
} int main()
{
int t;
read(t);
while(t--)
{
read(n);
for(int i=;i<=n;i++)ve[i].clear();
int x,y;
for(int i=;i<n;i++)
{
read(x);read(y);
ve[x].push_back(y);
ve[y].push_back(x);
}
ans=;
num=;
dfs(,-);
cout<<ans<<" "<<num<<"\n";
}
return ;
}

poj-1655 Balancing Act(树的重心+树形dp)的更多相关文章

  1. POJ 1655 Balancing Act 树的重心

    Balancing Act   Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...

  2. POJ 1655 - Balancing Act 树型DP

    这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...

  3. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  4. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

  5. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  6. POJ 1655 Balancing Act(求树的重心--树形DP)

    题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...

  7. poj 1655 Balancing Act(找树的重心)

    Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...

  8. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  9. POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)

    树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...

随机推荐

  1. mybatis自动映射和手动映射

    一对一查询 第一种方法: <!-- 查询所有订单信息 --> <select id="findOrdersList" resultType="cn.it ...

  2. 一个爬取lativ诚衣网站上模特穿搭图片的爬虫

    show the code: [peter@localhost savvy]$ vi lativ.py # -*- coding:utf-8 -*- import requests,lxml,os f ...

  3. 【转】关于大型网站技术演进的思考(二十)--网站静态化处理—web前端优化—中(12)

    Web前端很多优化原则都是从如何提升网络通讯效率的角度提出的,但是这些原则使用的时候还是有很多陷阱在里面,如果我们不能深入理解这些优化原则背后所隐藏的技术原理,很有可能掉进这些陷阱里,最终没有达到最佳 ...

  4. 全局Session-GlobalSession

    import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpSession; import org.spri ...

  5. 如何评价ionic和react native?

    Q:对于开发hybird app首选哪个好?是ionic还是react native?如何评价ionic和react native? A: 我看好React系,React系以正确地姿势,专注地做了正确 ...

  6. Java实验--继承与多态

    ---恢复内容开始--- 题目如下: [实验任务一]:面积计算(设计型). 1. 实验要求: 实验报告中要求包括程序设计思想.程序流程图.源代码.运行结果截图.编译错误分析等内容. 2.实验内容: ( ...

  7. SpringMVC Ueditor1.4.3 未找到上传数据

    ueditor自事的fileupload组件与spring的有冲突.将那个类BinaryUploader 重写就可以了             return storageState;         ...

  8. CoolCTO - 创业者的技术合伙人

    CoolCTO - 创业者的技术合伙人

  9. JVM监控工具:jps、jstat、jinfo、jmap、jhat、jstack使用介绍

    转载:http://outofmemory.cn/java/jvm/jvm-tools-jps-jstat-jinfo-jmap-jhat-jstack 一.jps(JVM Process Statu ...

  10. mysql innodb插入意向锁

    innodb中有插入意向锁.专门针对insert,假设插入前,该间隙已经由gap锁,那么Insert会申请插入意向锁. 那么这个插入意向锁的作用是什么? 1.为了唤起等待.由于该间隙已经有锁,插入时必 ...