Hubtown

时间限制: 10 Sec  内存限制: 256 MB

题目描述

Hubtown is a large Nordic city which is home to n citizens. Every morning, each of its citizens wants to travel to the central hub from which the city gets its name, by using one of the m commuter trains which pass through the city. Each train line is a ray (i.e., a line segment which extends infinitely long in one direction), ending at the central hub, which is located at coordinates (0, 0). However, the train lines have limited capacity (which may vary between train lines), so some train lines may become full, leading to citizens taking their cars instead of commuting. The city council wishes to minimize the number of people who go by car. In order to do this, they will issue instructions stating which citizens are allowed to take which train. 
A citizen will always take the train line which is of least angular distance from its house. However, if a citizen is exactly in the middle between two train lines, they are willing to take either of them, and city council can decide which of the two train lines the citizen should use. 
See Figure H.1 for an example.

Figure H.1: Illustration of Sample Input 1. The dashed arrows indicate which train lines the citizens are closest to (note that we are measuring angular distances, not Euclidean distance).
Your task is to help the council, by finding a maximum size subset of citizens who can go by train in the morning to the central hub, ensuring that each of the citizens take one of the lines they are closest to, while not exceeding the capacity of any train line. For this subset, you should also print what train they are to take.

输入

The first line of input contains two integers n and m, where 0 ≤ n ≤ 200 000 is the number of citizens, and 1 ≤ m ≤ 200 000 is the number of train lines.
The next n lines each contain two integers x and y, the Cartesian coordinates of a citizen’s home. No citizen lives at the central hub of the city.
Then follow m lines, each containing three integers x, y, and c describing a train line, where (x, y) are the coordinates of a single point (distinct from the central hub of the city) which the train line passes through and 0 ≤ c ≤ n is the capacity of the train line. The train line is the ray starting at (0, 0) and passing through (x, y).
All coordinates x and y (both citizens’ homes and the points defining the train lines) are bounded by 1000 in absolute value. No two train lines overlap, but multiple citizens may live at the same coordinates.

输出

First, output a single integer s – the maximum number of citizens who can go by train. Then,output s lines, one for each citizen that goes by train. On each line, output the index of the citizen followed by the index of the train line the citizen takes. The indices should be zero-indexed (i.e.,between 0 and n − 1 for citizens, and between 0 and m − 1 for train lines, respectively), using the same order as they were given in the input.

样例输入

3 2
2 0
-1 0
-2 -1
1 -1 1
1 1 2

样例输出

3
0 1
1 1
2 0

 

题意:n个人,m个铁轨,每个人要到最近的铁轨去,若最近的有两个可二选一,每个铁轨能承受的人数有限,问最多多少个人可以到铁轨上。

做法:先对人和铁轨一起进行极角排序,然后记录一下距离人最近的上下两个铁轨,之后建图跑最大流。具体细节在代码中说明。

此外,这题能跑最大流是因为网络流跑二分图匹配的时间复杂度是 O(m*sqrt(n)),而且实际编程中速度会更快。

#include<bits/stdc++.h>
#define N 400050
#define M 2000050
using namespace std;
typedef struct
{
int v;
int flow;
} ss; ss edg[M];
vector<int>edges[N];
int now_edges=; void addedge(int u,int v,int flow)
{
// printf(" %d %d %d\n",u,v,flow);
edges[u].push_back(now_edges);
edg[now_edges++]=(ss)
{
v,flow
};
edges[v].push_back(now_edges);
edg[now_edges++]=(ss)
{
u,
};
} int dis[N],S,T;
bool bfs()
{
memset(dis,,sizeof(dis));
queue<int>q;
q.push(S);
dis[S]=; while(!q.empty())
{
int now=q.front();
q.pop();
int Size=edges[now].size(); for(int i=; i<Size; i++)
{
ss e=edg[edges[now][i]];
if(e.flow>&&dis[e.v]==)
{
dis[e.v]=dis[now]+;
q.push(e.v);
}
}
}
if(dis[T]==)
return ;
return ; }
int current[N];
int dfs(int now,int maxflow)
{
if(now==T)
return maxflow;
int Size=edges[now].size();
for(int i=current[now]; i<Size; i++)
{
current[now]=i;
ss &e=edg[edges[now][i]]; if(e.flow>&&dis[e.v]==dis[now]+)
{
int Flow=dfs(e.v,min(maxflow,e.flow)); if(Flow)
{
e.flow-=Flow;
edg[edges[now][i]^].flow+=Flow;
return Flow;
}
}
}
return ;
} int dinic()
{
int ans=,flow;
while(bfs())
{
memset(current,,sizeof(current));
while(flow=dfs(S,INT_MAX/))
ans+=flow;
}
return ans;
} struct orz //铁轨和人的统一结构体,value<0为人,value>0为铁轨
{
int value,number;
int x,y,sgn; void setxy(int a,int b)
{
x=a;
y=b;
if(!x)sgn=y>;
else sgn=x>;
}
}; int cross(int x1,int y1,int x2,int y2)//计算叉积
{
return (x1*y2-x2*y1);
} int compare(orz a,orz b,orz c)//计算极角
{
return cross((b.x-a.x),(b.y-a.y),(c.x-a.x),(c.y-a.y));
} bool cmp(orz a,orz b)
{
if(a.sgn!=b.sgn)return a.sgn<b.sgn;
orz c;//原点
c.x = ;
c.y = ;
if(compare(c,a,b)==)//计算叉积,函数在上面有介绍,如果叉积相等,按照X从小到大排序
return a.number>b.number;
else
return compare(c,a,b)<;
} bool point_on_line(orz a,orz b)
{
int d1=__gcd(abs(a.x),abs(a.y)),d2=__gcd(abs(b.x),abs(b.y));
return (a.x/d1==b.x/d2)&&(a.y/d1==b.y/d2);
} const long double epsss=1e-; struct Point
{
int x,y;
Point() {}
Point(int _x,int _y)
{
x=_x,y=_y;
}
};
struct Pointd
{
long double x,y;
Pointd() {}
Pointd(long double _x,long double _y)
{
x=_x,y=_y;
}
}; int cross(const Point&a,const Point&b)
{
return a.x*b.y-a.y*b.x;
} long double crossd(const Pointd&a,const Pointd&b)
{
return a.x*b.y-a.y*b.x;
} int sig(int x)
{
if(x==)
return ;
return x>?:-;
} int sigd(long double x)
{
if(fabs(x)<epsss)
return ;
return x>?:-;
} int distance_cmp(const orz&_a,const orz&_b,const orz&_c)//判断点a距离哪一条射线近
{
Point a(_a.x,_a.y);
Point b(_b.x,_b.y);
Point c(_c.x,_c.y);
Point d;
if(!cross(b,c))
{
d=Point(-b.y,b.x);
if(!cross(a,d))
return ;
if(sig(cross(d,a))==sig(cross(d,b)))
return -;
return ;
}
long double L=sqrt(b.x*b.x+b.y*b.y);
long double R=sqrt(c.x*c.x+c.y*c.y);
Pointd aa(a.x,a.y);
Pointd bb(b.x,b.y);
Pointd cc(c.x,c.y);
Pointd dd(d.x,d.y);
bb.x*=R;
bb.y*=R;
cc.x*=L;
cc.y*=L;
dd=Pointd(bb.x+cc.x,bb.y+cc.y);
if(!sigd(crossd(aa,dd)))
return ;
if(sigd(crossd(dd,aa))==sigd(crossd(dd,bb)))
return -;
return ;
} orz allpoint[N*];
int up[N],down[N]; int main()
{
int n,m;
scanf("%d %d",&n,&m);
S=n+m+;
T=n+m+; for(int i=; i<=n; i++)
{
int x,y;
scanf("%d %d",&x,&y);
allpoint[i].setxy(x,y);
allpoint[i].value=-;
allpoint[i].number=i;
addedge(S,i,);
} for(int i=; i<=m; i++)
{
int x,y,z;
scanf("%d %d %d",&x,&y,&z);
allpoint[i+n].setxy(x,y);
allpoint[i+n].value=z;
allpoint[i+n].number=i+n;
addedge(i+n,T,z);
} sort(allpoint+,allpoint++n+m,cmp);//对人和铁轨一起进行极角排序 for(int i=n+m;i>=;i--)if(allpoint[i].value>=){down[]=i;break;} //寻找最后一个铁轨
for(int i=;i<=n+m;i++)
{
down[i]=down[i-];
if(allpoint[i].value>=)down[i]=i;
} for(int i=;i<=n+m;i++)if(allpoint[i].value>=){up[n+m+]=i;break;}//寻找第一个铁轨
for(int i=n+m;i>=;i--)
{
up[i]=up[i+];
if(allpoint[i].value>=)up[i]=i;
} for(int i=;i<=n+m;i++)
if(allpoint[i].value<)
{
int a=up[i],b=down[i]; if(a==b)addedge(allpoint[i].number,allpoint[a].number,);
else
if(point_on_line(allpoint[i],allpoint[a]))addedge(allpoint[i].number,allpoint[a].number,);
else
if(point_on_line(allpoint[i],allpoint[b]))addedge(allpoint[i].number,allpoint[b].number,);
else
{
int t=distance_cmp(allpoint[i],allpoint[a],allpoint[b]);
if(t<=)addedge(allpoint[i].number,allpoint[a].number,);
if(t>=)addedge(allpoint[i].number,allpoint[b].number,);
}
} int sum=dinic();
printf("%d\n",sum);
for(int i=; i<=n; i++)
{
int Size=edges[i].size();
for(int j=; j<Size; j++)
{
if(edg[edges[i][j]^].flow&&edg[edges[i][j]].v!=S)//注意这里要判一下另一个点是不是起点
{
printf("%d %d\n",i-,edg[edges[i][j]].v-n-);
break;
}
}
}
return ;
}
 

Hubtown的更多相关文章

  1. Hubtown(最大流)

    Hubtown 时间限制: 1 Sec  内存限制: 128 MB提交: 23  解决: 11[提交] [状态] [讨论版] [命题人:admin] 题目描述 Hubtown is a large N ...

  2. 2017-2018 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2017)

    A. Airport Coffee 设$f_i$表示考虑前$i$个咖啡厅,且在$i$处买咖啡的最小时间,通过单调队列优化转移. 时间复杂度$O(n)$. #include<cstdio> ...

  3. 2017-2018 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2017) Solution

    A - Airport Coffee 留坑. B - Best Relay Team 枚举首棒 #include <bits/stdc++.h> using namespace std; ...

随机推荐

  1. 51nod 1174 区间中最大的数(送盾题)

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出一个有N个数的序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有数中,最大的数是多少. ...

  2. openstack安装dashboard后访问horizon出错 End of script output before headers: django.wsgi

    在配置文件中增加如下的一句解决问题 /etc/apache2/conf-available/openstack-dashboard.conf WSGIApplicationGroup %{GLOBAL ...

  3. Codeforces Round #271 (Div. 2)-B. Worms

    http://codeforces.com/problemset/problem/474/B B. Worms time limit per test 1 second memory limit pe ...

  4. 用函数式编程思维解析anagrams函数

    //函数式编程思维分析 这个排列函数 const anagrams = str => { if (str.length <= 2) return str.length === 2 ? [s ...

  5. PHP调用新浪API 生成短链接

    我们经常收到类似于这样的短信(如下图),发现其中的链接并不是常规的网址链接,而是个短小精悍的短链接,产品中经常需要这样的需求,如果在给用户下发的短信中是一个很长的连接,用户体验肯定很差,因此我们需要实 ...

  6. 【OS_Linux】清空终端屏幕的方法

    使用clear命令或Ctrl+L组合键来清空终端屏幕,它不是真正的清空了,而是给人以错觉,当向上滚动鼠标后发现屏幕的内容依然在. 使用printf '\033c'才真正意义上清空了屏幕,它同DOS下的 ...

  7. springboot 修炼之路

    网上无意中发现一份关于springboot的教程说明,说的很详细,大家可以参考.具体地址:http://www.spring4all.com/article/246

  8. simulation clock gen unit (推荐)

    //Normal Clock Block always begin:clk_blk clk <=; # clk<=; #; end //Improved Clock Block, impr ...

  9. 多线程并发情况下 重复insert问题

    代码逻辑: if(数据不存在){ insert(); } 线程启动后,发现数据库表中有相同的记录 解决方案 synchronized同步代码块即加同步锁,synchronized同步代码块的功能: 当 ...

  10. ASP.NET MVC中如何在当前页面上弹出另外一个页面

    注意:不是链接到另一个页面,而是弹出一个页面,当前的页面和弹出页面都存在于浏览器的同一个标签页中,效果如图: 弹出的窗体置于四大天王页面之上,但是无法继续操作底层的页面,代码如下: function ...