BZOJ 3518 点组计数 ——莫比乌斯反演
要求$ans=\sum_{i=1}^n \sum_{j=1}^m (n-i)(m-j)(gcd(i,j)-1)$
可以看做枚举矩阵的大小,然后左下右上必须取的方案数。
这是斜率单增的情况
然后大力反演即可。
最后$ans=ans*2+C(n,3)*m+C(m,3)*n$
$\Theta (n \log n)$
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define md 1000000007
#define inf 0x3f3f3f3f
#define maxn 50005 ll vis[maxn],mu[maxn],pr[maxn],top; void init1()
{
mu[1]=1;
F(i,2,maxn)
{
if (!vis[i])
{
mu[i]=-1;
pr[++top]=i;
}
F(j,1,top)
{
if ((ll)i*pr[j]>=maxn) break;
vis[i*pr[j]]=1;
if (i%pr[j]==0) {mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=-mu[i];
}
}
} ll f1[maxn],f2[maxn],f3[maxn],ans=0; ll Sum(ll n)
{
n=(((n+1)*n)>>1)%md;
return n;
} void solve(ll n,ll m)
{
if (n>m) swap(n,m);
ll ret=0;
F(d,1,n)
{
ll tmp=0;
F(p,1,n/d)
{
tmp+=mu[p]*(n/p/d)*(m/p/d)*m*n; tmp%=md;
tmp+=mu[p]*d*d*p*p*Sum(n/p/d)*Sum(m/p/d); tmp%=md;
tmp-=mu[p]*m*d*p*(m/p/d)*Sum(n/p/d); tmp%=md;
tmp-=mu[p]*n*d*p*(n/p/d)*Sum(m/p/d); tmp%=md;
}
ret+=tmp*(d-1);
}
ans=(2*ret)%md;
} ll n,m; ll C(ll n)
{
n%=md;
return (n*(n-1)*(n-2)/6)%md;
}
int main()
{
init1();//init2();
scanf("%lld%lld",&n,&m);
solve(n,m);
printf("%lld\n",(ans+(n*C(m))%md+(m*C(n))%md)%md);
}
BZOJ 3518 点组计数 ——莫比乌斯反演的更多相关文章
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- 【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体 ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 1114 Number theory(莫比乌斯反演+预处理)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- UOJ #54 时空穿梭 —— 计数+莫比乌斯反演+多项式系数
题目:http://uoj.ac/problem/54 10分还要用 Lucas 定理囧...因为模数太小了不能直接算... #include<cstdio> #include<cs ...
随机推荐
- C# 一维数组 冒泡排序
假设有个三个杯子 一个杯子中有一个紫色的乒乓球 一个没有 一个有红色乒乓球 杯子不能动 怎么把紫色和红色的调换呢 主要是先把紫色的放到空的杯子 在把红的放到紫色原来的杯子 再把 ...
- 洛谷 P1901 发射站
题目描述 某地有 N 个能量发射站排成一行,每个发射站 i 都有不相同的高度 Hi,并能向两边(当 然两端的只能向一边)同时发射能量值为 Vi 的能量,并且发出的能量只被两边最近的且比 它高的发射站接 ...
- 什么是Java Marker Interface(标记接口)
先看看什么是标记接口?标记接口有时也叫标签接口(Tag interface),即接口不包含任何方法.在Java里很容易找到标记接口的例子,比如JDK里的Serializable接口就是一个标记接口. ...
- crontab 应用
可以用crontab -e 添加要执行的命令. 命令执行的结果,无论是标准输出还是错误输出,都将以邮件形式发给用户. 添加的命令必须以如下格式: * * * * * /co ...
- iOS,APP退到后台,获取推送成功的内容并且语音播报内容。
老铁,我今天忙了一下午就为解决这个问题,网上有一些方法,说了一堆关于这个挂到后台收到推送并且获得推送内容的问题,有很多人都说APP挂到后台一会就被杀死.但实际上可以有办法解决的. WechatIMG3 ...
- 有C++特色的极乐净土
闲的没事瞎打的 在win7下会走调,需要将win7的beep系统文件改成xp的,且主机装有蜂鸣器才能正常收听. beep文件的度盘地址(不过应该没人为了听个这个去改系统文件)(P.S.如果想要尝试,尽 ...
- nib、xib、storyboard(故事板)
nib:NeXT Interface Builder的缩写 xib:XML nib的缩写 相同点: nib和xib都是Interface Builder的图形界面设计文档.Interface Buil ...
- js最高效的数组去重方法
var arr=[1,2,33,2,4,5,33,5,7,8,1,3];var result=[];var temp={};for( var i=0;i<arr.length;i++){ if( ...
- 【Office_Word】Word排版
文档排版的步骤: step1.先设置正文的样式 step2.再设置各级标题的样式 step3.最后在"多级列表"里设置各级标题编号 [注]最好按照这三步的顺序来排版,否则将会导致正 ...
- 【支付宝支付】扫码付和app支付,回调验证签名失败问题
在检查了参数排序,编码解码,文件编码等问题后,发现还是签名失败,最后找出原因: 扫码付和app支付采用的支付宝公钥不一样 Pid和公钥管理里面: 开放平台密钥界面和开放平台应用界面的密钥应该一 ...