题目描述

有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)

这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树

2   5
\ /
3 4
\ /
1

现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。

输入输出格式

输入格式:

第1行2个数,N和Q(1<=Q<= N,1<N<=100)。

N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。

每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。

每根树枝上的苹果不超过30000个。

输出格式:

一个数,最多能留住的苹果的数量。

输入输出样例

输入样例#1:

5 2
1 3 1
1 4 10
2 3 20
3 5 20
输出样例#1:

21

Solution

一道我想了比较久的树形DP.

本来以为就是常规的和选课差不多的基本树形DP.

于是想出来一个思路:

f [i][j] 表示当前以当前这个节点为根的子树,删掉了 j 条边的最大值.

然后我想的是先预处理每一个节点的边之和和果子之和,结果发现妥妥的后效性...

于是,想到常规思路.不过为了取消对于当前这个边是否为当前这个子树的根的连边的考虑.

f [i][j] 表示当前这个节点一定被保存下来.

然后的话状态转移也就很简单了,就是一个类似于背包的转移方程.

但是,我打的时候,之前一直是 0 .

结果发现,我对已经初始化了的 f[x][1],仍然进行了更新...

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
struct sj{
int to;
int next;
int w;
}a[maxn*];
int size,head[maxn];
int c[maxn],n,m,num[maxn];
int f[maxn][maxn],v[maxn]; void add(int x,int y,int z)
{
a[++size].to=y;
a[size].next=head[x];
head[x]=size;
a[size].w=z;
} /*void pre(int x)
{
for(int i=head[x];i;i=a[i].next)
{
int tt=a[i].to;
if(!c[tt]&&tt!=1)
{
pre(tt);
num[x]+=num[tt];
}
}
}*/
//没卵用的初始化. void dp(int x)
{
v[x]=;
for(int i=head[x];i;i=a[i].next)
{
int tt=a[i].to;
if(!v[tt])
{
f[tt][]=a[i].w;
dp(tt);
for(int j=m;j>=;j--)
for(int k=;k<=j;k++)
if((k!=j&&j!=)||x==)
f[x][j]=max(f[x][j],f[tt][k]+f[x][j-k]);
}
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
add(,,);
pre();
//memset(f,-1,sizeof(f));
dp();
cout<<f[][m]<<endl;
}

P2015 二叉苹果树 (树形动规)的更多相关文章

  1. P2015 二叉苹果树[树形dp+背包]

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  2. P2015 二叉苹果树,树形dp

    P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...

  3. 洛谷 P2015 二叉苹果树 (树上背包)

    洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...

  4. P2015 二叉苹果树

    P2015 二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接 ...

  5. 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解

    二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...

  6. 【P2015】二叉苹果树 (树形DP分组背包)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是 ...

  7. 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门

    dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...

  8. 洛谷 P2015 二叉苹果树 && caioj1107 树形动态规划(TreeDP)2:二叉苹果树

    这道题一开始是按照caioj上面的方法写的 (1)存储二叉树用结构体,记录左儿子和右儿子 (2)把边上的权值转化到点上,离根远的点上 (3)用记忆化搜索,枚举左右节点分别有多少个点,去递归 这种写法有 ...

  9. 洛谷P2015 二叉苹果树

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

随机推荐

  1. (五)maven之外置maven

    eclipse外置maven eclipse内置的maven插件是固定版本,如果要用其他版本的maven,可以使用外置maven. ①    在菜单栏上点击“Windows”à“Preferences ...

  2. CSS3制作的一款按钮特效

    /*.btn { width:230px; height:70px; font-size:70px; font-weight:bold; overflow:hidden; font: "He ...

  3. Dockerfile优化建议

    1. 减少镜像层 一次RUN指令形成新的一层,尽量Shell命令都写在一行,减少镜像层. 2. 优化镜像大小:清理无用数据 一次RUN形成新的一层,如果没有在同一层删除,无论文件是否最后删除,都会带到 ...

  4. Hello World投票以太坊Dapp教程-Part1

    参考资料:https://medium.com/@mvmurthy/full-stack-hello-world-voting-ethereum-dapp-tutorial-part-1-40d2d0 ...

  5. CSS - position属性小结

    Relative: 属于文档流,针对自身进行偏移: Absolute: 脱离文档流,针对最近的定位元素进行偏移,如果没有,则针对根元素,即body标签尽心偏移: Fixed: 和absolute基本一 ...

  6. ios之UITextfield

    //初始化textfield并设置位置及大小   UITextField *text = [[UITextField alloc]initWithFrame:CGRectMake(20, 20, 13 ...

  7. 关于“xx.xx已被OS X使用,无法打开”的问题

    Mac电脑上的文件拷贝到移动硬盘,有时候会出现“xx.xx已被OS X使用,无法打开”的问题. 解决办法: 1.打开终端(或在Mac搜索里面输入Terminal); 2.在终端里输入 xattr -l ...

  8. javascript基础知识 (八) BOM学习笔记

    一.什么是BOM      BOM(Browser Object Model)即浏览器对象模型.      BOM提供了独立于内容 而与浏览器窗口进行交互的对象:      由于BOM主要用于管理窗口 ...

  9. ABAQUS用户子程序一览表

    说明 ABAQUS用户子程序一览表 ABAQUSStandard subroutines Refence 说明 本系列文章本人基本没有原创贡献,都是在学习过程中找到的相关书籍和教程相关内容的汇总和梳理 ...

  10. HDU - 4811 - Ball (思维)

    题意: 给出一定数量的三种颜色的球,计算如何摆放得到值最大(有一定顺序) 有三种摆放方法 1.如果放的是第一个(桌子上原来没有),数值不变 2.如果在末尾追加一个,那么增加前面不同颜色的个数的值 3. ...