洛谷3811

先用n!p-2求出n!的乘法逆元

因为有(i-1)!-1=i!-1*i (mod p),于是我们可以O(n)求出i!-1

再用i!-1*(i-1)!=i-1 (mod p)即是答案

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=, inf=1e9;
int n, p;
int fac[maxn], inv[maxn];
inline void read(int &k){
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline int power(int a, int b){
int ans=;
for(;b;b>>=, a=1ll*a*a%p)
if(b&) ans=1ll*ans*a%p;
return ans;
}
int main(){
read(n); read(p);
fac[]=; for(int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%p;
inv[n]=power(fac[n], p-);
for(int i=n;i;i--) inv[i-]=1ll*inv[i]*i%p;
for(int i=;i<=n;i++) printf("%lld\n", 1ll*fac[i-]*inv[i]%p);
}

【模板】求1~n的整数的乘法逆元的更多相关文章

  1. 线性求所有数模p的乘法逆元

    推理: 假如当前计算的是x在%p意义下的逆元,设$p=kx+y$,则 $\Large kx+y\equiv 0(mod\ p)$ 两边同时乘上$x^{-1}y^{-1}$(这里代表逆元) 则方程变为$ ...

  2. luogu3811 【模板】乘法逆元

    题目大意:给出n,求1~n所有数的乘法逆元. 乘法逆元的概念是:如果b*rev(b)≡1 (mod p),p与b互质,则rev(b)就是b的模p乘法逆元.乘法逆元往往用于除法取模. 具体操作详见htt ...

  3. CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)

    C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  4. bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)

    Description Input Output Sample Input 2 1 10 13 3 Sample Output 12 Source 看到t很小,想到用容斥原理,推一下发现n种数中选m个 ...

  5. HDU6608-Fansblog(Miller_Rabbin素数判定,威尔逊定理应用,乘法逆元)

    Problem Description Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people ...

  6. 逆元-P3811 【模板】乘法逆元-洛谷luogu

    https://www.cnblogs.com/zjp-shadow/p/7773566.html -------------------------------------------------- ...

  7. [洛谷P3811]【模板】乘法逆元

    P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...

  8. 模板【洛谷P3811】 【模板】乘法逆元

    P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...

  9. luogu P3811 【模板】乘法逆元

    题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...

随机推荐

  1. 批量ssh执行命令

    [root@openfire1 script]# cat test.sh  #!/bin/bash   #本地通过ssh执行远程服务器的脚本   for ip in `cat iplist`  do ...

  2. ios11--播放音效

    // // ViewController.m // 10-iOS中播放音效 // // Created by xiaomage on 15/12/26. // Copyright © 2015年 小码 ...

  3. ASP.NET_SessionId vs .ASPXAUTH why do we need both of them?

    https://stackoverflow.com/questions/23758704/asp-net-sessionid-vs-aspxauth-why-do-we-need-both-of-th ...

  4. Bing Maps进阶系列七:Bing Maps功能导航菜单华丽的变身

    Bing Maps进阶系列七:Bing Maps功能导航菜单华丽的变身 Bing Maps Silverlight Control所提供的功能导航是非常强大的,在设计上对扩展的支持非常好,提供了许多用 ...

  5. [Swift通天遁地]四、网络和线程-(9)上传图片并实时显示上传进度

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  6. Visual Studio Code配置GitHub(Win7环境)

    一.软件环境说明(演示环境) 1.操作系统:Windows7旗舰版(64bit) 2.Visual Studio Code版本:1.32.3 3.Git版本:2.21.0.windows.1 二.软件 ...

  7. NS2学习笔记(二)

    Tcl语言 变量和变量赋值 set a "Hello World!" #将字符串赋值给变量a puts "NS2 say $a" #输出字符串的内容,其中$a表 ...

  8. BZOJ 4481

    思路: 等比数列求和 (无穷项) +线段树找逆序对 //By SiriusRen #include <bits/stdc++.h> ; ; ],ans; struct Node{int x ...

  9. PHP电影小爬虫(2)

    学习了别人的爬虫后自己改的一个,算是又回顾了一下php的使用 我们来利用simple_html_dom的采集数据实例,这是一个PHP的库,上手很容易.simple_html_dom 可以很好的帮助我们 ...

  10. JdbcTemplate:Jdbc模板和数据库元数据

    通过 Jdbc .C3P0 .Druid 的使用我们会发现即使我们做了工具的封装,但重复性的代码依旧很多.我们可以通过 JdbcTemplate 即 Jdbc 模板来使我们的代码更加简洁,逻辑更加清晰 ...