POJ 3310 Caterpillar(图的度的判定)
题意:
给定一幅图, 问符不符合一下两个条件;
(1) 图中没有环
(2)图中存在一条链, 点要么在链上, 要么是链上点的邻居。
分析:
建图,记录度数, 去掉所有度为1的点, 然后看看剩下是否是有2个度为1的点和其他都是度为2的点。
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<string>
#include<map>
#include<stack>
#include<vector>
#include<algorithm>
#include<cmath>
#define rep(i,a,b) for(int i = a; i < b; i++)
#define _rep(i,a,b) for(int i = a; i <= b; i++)
using namespace std;
int G[][];
int n, m;
int deg[], vis[];
int main(){
// freopen("1.txt","r", stdin);
int kase = ;
while(~scanf("%d", &n) && n){
memset(G,,sizeof(G));
memset(deg,,sizeof(deg));
memset(vis,,sizeof(vis));
scanf("%d", &m);
for(int i = ; i < m ; i++){
int u, v;
scanf("%d %d", &u, &v);
G[u][v] = G[v][u] = ;
deg[u]++;
deg[v]++;
}
for(int i = ; i <= n; i++){
if(deg[i] == ){ //把度为1的点全部删除, 把链上的分叉的消去
vis[i] = ;
for(int j = ; j <= n; j++){
if(G[i][j])
deg[j]--;
}
}
}
int ok = , _1 = , _2 = ,cnt = ;
for(int i = ;i <= n; i++){
if(!vis[i]){
cnt++;
if(deg[i] == ) _1++;//统计剩下点度为1的
else if(deg[i] == ) _2++;//统计剩下度为2的
}
}
if(!(_1 == && _2 == (cnt-))) ok = ;//如果有2个度为1, 其他都是2, 那么就是一条链, 其他情况都不符合
if(ok)
printf("Graph %d is a caterpillar.\n",kase++);
else printf("Graph %d is not a caterpillar.\n",kase++);
}
return ;
}
POJ 3310 Caterpillar(图的度的判定)的更多相关文章
- poj 3310(并查集判环,图的连通性,树上最长直径路径标记)
题目链接:http://poj.org/problem?id=3310 思路:首先是判断图的连通性,以及是否有环存在,这里我们可以用并查集判断,然后就是找2次dfs找树上最长直径了,并且对树上最长直径 ...
- POJ 1637 混合图的欧拉回路判定
题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...
- poj 1659 Frogs' Neighborhood 度序列可图化 贪心
题意: 对一个无向图给出一个度序列,问他是否可简单图化. 分析: 依据Havel定理,直接贪心就可以. 代码: //poj 1659 //sep9 #include <iostream> ...
- poj 1144 Network 图的割顶判断模板
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8797 Accepted: 4116 Descripti ...
- POJ 1637 混合图欧拉回路
先来复习一下混合图欧拉回路:给定一张含有单向边和双向边的图,使得每一点的入度出度相同. 首先对于有向边来说,它能贡献的入度出度是确定的,我们不予考虑.对于无向图,它可以通过改变方向来改变两端点的出入度 ...
- POJ 1659 Frogs' Neighborhood(度序列组成)
意甲冠军 中国 依据Havel-Hakimi定理构图即可咯 先把顶点按度数从大到小排序 可图的话 度数大的顶点与它后面的度数个顶点相连肯定是满足的 出现了-1就说明不可图了 #include ...
- poj 1129(dfs+图的四色定理)
题目链接:http://poj.org/problem?id=1129 思路:根据图的四色定理,最多四种颜色就能满足题意,使得相邻的两部分颜色不同.而最多又只有26个点,因此直接dfs即可. #inc ...
- POJ 2942Knights of the Round Table(二分图判定+双连通分量)
题目链接 题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. ...
- BZOJ-1305 dance跳舞 建图+最大流+二分判定
跟随YveH的脚步又做了道网络流...%%% 1305: [CQOI2009]dance跳舞 Time Limit: 5 Sec Memory Limit: 162 MB Submit: 2119 S ...
随机推荐
- [BJOI2017]魔法咒语
Description Chandra 是一个魔法天才. 从一岁时接受火之教会洗礼之后, Chandra 就显示出对火元素无与伦比的亲和力,轻而易举地学会种种晦涩难解的法术.这也多亏 Chandra ...
- SQL 语句学习
Sql语句学习 一. select playerId, count(playerId) as num from OperateLog_$i where playerId > 0 and roo ...
- c#学习系列之装箱拆箱
1. 装箱和拆箱是一个抽象的概念 2. 装箱是将值类型转换为引用类型 :拆箱是将引用类型转换为值类型 利用装箱和拆箱功能,可通过允许值类型的任何值与Object 类型的 ...
- Mysql数据类型简介(大概了解)
知道有整型,浮点型,定点数类型( DECIMAL(M,D)M是数据总长度,是小数位 ),日期类,字符串类,二进制类型(存图片路径,视频路径一般用BLOG就行了喔)……不会再去查 讲一下几个专有名词: ...
- 让搜狗输入法更符合编程/vim使用的配置
1. “菜单”—“设置属性”—“常用”—“初始状态”里的“中/英文”选项,选中“英文” 2. 设置属性里的“高级”里的“高级模式”,点“英文输入法设置”,“启动时启用英文输入法”选中 3. 按键-中英 ...
- 洛谷P3254 圆桌问题(最大流)
题意 $m$个不同单位代表参加会议,第$i$个单位有$r_i$个人 $n$张餐桌,第$i$张可容纳$c_i$个代表就餐 同一个单位的代表需要在不同的餐桌就餐 问是否可行,要求输出方案 Sol 比较zz ...
- <meta>详解
一.元数据和<meta> 元数据是描述以提供关于其他数据的数据,在<meta>中,html document是被描述的数据,meta标签中包括的数据是描述html docume ...
- Linux安装技巧--安装Uuntu与windows8/10共存
1.准备安装双系统所需工具. 系统: Linux有众多的衍生版本,选择一个自己喜欢的版本下载,建议新手上ubuntu吧,中文教程较多,出了问题容易解决,等到熟悉了再用其他的也行,新手的话ubuntu也 ...
- sybase sql anywhere 5.0 安装后sybase central中无法打开视图等的解决办法
无法打开的原因初步分析要用英文版的xp,后来在如下处发现问题,是sql anywhere的版本太旧了, 可能没有使用Unicode编码,设置一下如下选项可以解决问题.
- innerHTML与IE浏览器内存泄露问题
使用 sIEve 扫描和筛选 如果大量使用 JavaScript 和 Ajax 技术开发 Web 2.0 应用程序,您很有可能会遇到浏览器的内存泄漏问题.如果您有一个单页应用程序或者一个页面要处理很多 ...