题目描述

考古学家发现了一堵写有未知语言的白色墙壁,上面有一个n行m列的格子,其中有些格子内被填入了某个A至Z的大写字母,还有些格子是空白的。

一直横着或竖着的连续若干个字母会形成一个单词,且每一行的阅读顺序可能是从左向右或从右向左,每一列的阅读顺序可能是从下往上或从上往下。也就是说对于每一行来说,从左向右可以被看做是若干个单词形成的句子,相邻两个单词被一个或多个空白格子分割开来;也有可能是从右向左被看成是一个句子,竖直方向类似。

遗憾的是,我们并不完全知道每一行每一列的阅读顺序是怎样的。但可以猜测,有些单词会满足反转过来也是一个单词。例如单词BOY,翻转过来的YOB也是一个英文单词。

此外观察者发现,对每一行(列)来说,按照确定后的阅读顺序读出的所有单词同时满足“自己的字典序不小于翻转后的字典序”,或同时满足“自己的字典序不大于翻转后的字典序”。

在确定了所有行列的阅读顺序之后,我们可以构造出关于这种未知语言的字典。

请问字典中出现的“翻转过来也是一个单词”的单词最少有多少种请注意,如果一个单词翻转后是不同的另外一个单词,它们需要被分别计入;而对于本身是回文的单词则不需要重复计入

输入输出格式

输入格式:

第一行一个整数T,表示T组测试数据。

对于每一组数据来说:第一行输入两个整数n,m。

第二行给出了n个数字,对应n行,其中若第i个数字为1,则表示第i行的阅读顺序从左往右;若为-1则为从右向左;若为0则表示无法确定

第三行给出了m个数字,对应n行,其中若第i个数字为1,则表示第i列的阅读顺序从上往下;若为-1则为从下向上;若为0则表示无法确定

之后n行,每行给出了长度为m的字符串,由A~Z和下划线组成,对应了每个格子的符号,其中下划线表示格子为空。

输出格式:

输出T行。每一组数据输出一行一个整数,表示最少有多少个单词,满足翻转后依然是单词。

注意,如果一个单词是回文,那么它一定满足“翻转后依旧是单词”

输入输出样例

输入样例#1:

1

2 10

0 0

0 0 0 0 0 0 0 0 0 0

ADA_JARVIS

ADA_SIVRAJ

输出样例#1:

>3

说明

对于100%的数据,1<=n,m<=72,T<=64


题解

最小割

好久不写网络流现在我的网络流水平真低==

然后想了想似乎\(dp\)并不容易记录状态,那就应该是一个网络流了

发现要求正着倒着都存在的单词的对数最小

那么要不是个费用流,要不就是最小割,要不就是反面计数了

然后分析搜题解一下觉得应该是最小割

最小割连的一条边就表示把ta们分在不同集合的代价

那么可以发现回文串无论怎么翻转贡献都是1

所以不考虑回文串

然后考虑其他的单词

对于一个单词,如果这个单词和翻转后的这个单词同时出现那么就会产生2的贡献

所以我们对于每对单词,字典序小的往字典序大的单词连一条边权为2的边

然后再考虑读法的问题

可以发现行列没啥关系,所以相同方法考虑即可

如果给定读法是从左往右且这样读的单词字典序比倒着读小

那么就从\(S\)往该行连一条\(INF\)的边,然后这行向从左往右读的这行的单词连一条\(INF\)的边

如果给定读法是从左往右且这样读的单词字典序比倒着读大

那么就从这一行从左往右读的单词往这一行连一条\(INF\)的边,这行往\(T\)连一条\(INF\)的边

这样在跑最大流的时候如果一种单词的字典序较小的部分有流量流入就说明读出了这个单词

如果一种单词的字典序较大的部分有流量流入同样也说明读出了这个单词

那么这样就要割掉这条连着两个单词的边产生\(2\)的代价

从右往左读也是同理的

那么问题就是如果ta不给定你读法应该怎么办?

也就是说ta可以正着读也可以反着读

那么就同时连ta正着读的边和反着读的边

但是不连\(S,T\)到ta的边

这样跑一边最大流然后加上回文串就是答案了

代码

#include<map>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
# define ull unsigned long long
const int N = 80 ;
const int M = 3005 ;
const ull Base = 233 ;
const int INF = 1e8 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
} char s[N][N] ;
int n , m , S , T ;
int ans , cnt , num = 1 ;
int dirh[N] , dirl[N] , hea[M] ;
int hnum[N] , lnum[N] , d[M] ;
int hw[2][N][N] , lw[2][N][N] , isbig[M] ;
ull pw[N] , hsh1[N] , hsh2[N] ;
map < ull , int > p , hap ; struct E {
int nxt , to , dis ;
} edge[M * 20] ;
inline void Insert_edge(int from , int to , int dis) {
edge[++num].nxt = hea[from] ; edge[num].to = to ;
edge[num].dis = dis ; hea[from] = num ;
}
inline void add_edge(int u , int v , int w) {
Insert_edge(u , v , w) ;
Insert_edge(v , u , 0) ;
}
inline void Clear() {
ans = 0 ; cnt = 0 ; num = 1 ;
memset(isbig , false , sizeof(isbig)) ;
memset(hea , 0 , sizeof(hea)) ;
memset(hnum , 0 , sizeof(hnum)) ;
memset(lnum , 0 , sizeof(lnum)) ;
p.clear() ; hap.clear() ;
} inline bool Bfs() {
queue < int > q ; q.push(S) ;
memset(d , 0 , sizeof(d)) ; d[S] = 1 ;
while(!q.empty()) {
int u = q.front() ; q.pop() ;
for(int i = hea[u] ; i ; i = edge[i].nxt) {
int v = edge[i].to ;
if(!d[v] && edge[i].dis > 0) {
d[v] = d[u] + 1 ;
q.push(v) ;
}
}
}
return d[T] ;
}
int Dfs(int u , int dis) {
if(u == T || !dis) return dis ;
int Sum = 0 ;
for(int i = hea[u] ; i ; i = edge[i].nxt) {
int v = edge[i].to ;
if(d[v] == d[u] + 1 && edge[i].dis > 0) {
int diss = Dfs(v , min(dis , edge[i].dis)) ;
if(diss > 0) {
edge[i].dis -= diss ; edge[i ^ 1].dis += diss ;
dis -= diss ; Sum += diss ; if(!dis) break ;
}
}
}
if(!Sum) d[u] = -1 ;
return Sum ;
}
inline void dinic() {
while(Bfs())
ans += Dfs(S , INF) ;
}
int main() {
int Case = read() ;
pw[0] = 1 ; for(int i = 1 ; i <= 75 ; i ++) pw[i] = pw[i - 1] * Base ;
while(Case --) {
Clear() ;
n = read() ; m = read() ;
for(int i = 1 ; i <= n ; i ++) dirh[i] = read() ;
for(int i = 1 ; i <= m ; i ++) dirl[i] = read() ;
for(int i = 1 ; i <= n ; i ++) {
scanf("%s",s[i] + 1) ;
for(int j = 1 ; j <= m ; j ++)
hsh1[j] = hsh1[j - 1] * Base + s[i][j] ;
for(int j = m ; j >= 1 ; j --)
hsh2[j] = hsh2[j + 1] * Base + s[i][j] ;
int lst = 1 ; ull tp1 , tp2 ;
for(int j = 1 , l , r ; j <= m ; j ++) {
if(s[i][j] == '_' || j == m) {
l = lst , r = j - 1 ; lst = j + 1 ;
if(s[i][j] != '_') ++ r ; if(l > r) continue ;
tp1 = hsh1[r] - hsh1[l - 1] * pw[r - l + 1] ;
tp2 = hsh2[l] - hsh2[r + 1] * pw[r - l + 1] ;
if(tp1 == tp2) {
if(hap[tp1]) continue ;
++ ans ; hap[tp1] = 1 ; continue ;
}
if(!p[tp1]) {
int vit1 = 1 ;
for(int k = 1 ; k <= r - l + 1 ; k ++) {
if(s[i][l + k - 1] > s[i][r - k + 1]) break ;
else if(s[i][l + k - 1] < s[i][r - k + 1]) {
vit1 = -1 ;
break ;
}
}
p[tp1] = ++ cnt ; isbig[cnt] = vit1 ;
p[tp2] = ++ cnt ; isbig[cnt] = - vit1 ;
}
hw[0][i][++hnum[i]] = p[tp1] ; hw[1][i][hnum[i]] = p[tp2] ;
}
}
}
for(int j = 1 ; j <= m ; j ++) {
for(int i = 1 ; i <= n ; i ++)
hsh1[i] = hsh1[i - 1] * Base + s[i][j] ;
for(int i = n ; i >= 1 ; i --)
hsh2[i] = hsh2[i + 1] * Base + s[i][j] ;
int lst = 1 ; ull tp1 , tp2 ;
for(int i = 1 , l , r ; i <= n ; i ++) {
if(s[i][j] == '_' || i == n) {
l = lst , r = i - 1 ; lst = i + 1 ;
if(s[i][j] != '_') ++ r ; if(l > r) continue ;
tp1 = hsh1[r] - hsh1[l - 1] * pw[r - l + 1] ;
tp2 = hsh2[l] - hsh2[r + 1] * pw[r - l + 1] ;
if(tp1 == tp2) {
if(hap[tp1]) continue ;
++ ans ; hap[tp1] = 1 ; continue ;
}
if(!p[tp1]) {
int vit1 = 1 ;
for(int k = 1 ; k <= r - l + 1 ; k ++) {
if(s[l + k - 1][j] > s[r - k + 1][j]) break ;
else if(s[l + k - 1][j] < s[r - k + 1][j]) {
vit1 = -1 ;
break ;
}
}
p[tp1] = ++ cnt ; isbig[cnt] = vit1 ;
p[tp2] = ++ cnt ; isbig[cnt] = -vit1 ;
}
lw[0][j][++lnum[j]] = p[tp1] ; lw[1][j][lnum[j]] = p[tp2] ;
}
}
}
S = 0 , T = cnt + n + m + 1 ;
for(int i = 1 , x , y ; i <= cnt ; i += 2) {
x = i ; y = i + 1 ;
if(isbig[x] == 1) swap(x , y) ;
add_edge(x , y , 2) ;
}
for(int i = 1 ; i <= n ; i ++) {
if(!hnum[i]) continue ;
if((dirh[i] == 1 && isbig[hw[0][i][1]] < 0) || (dirh[i] == -1 && isbig[hw[1][i][1]] < 0)) {
add_edge(S , cnt + i , INF) ;
for(int j = 1 ; j <= hnum[i] ; j ++) {
if(dirh[i] == 1) add_edge(cnt + i , hw[0][i][j] , INF) ;
else add_edge(cnt + i , hw[1][i][j] , INF) ;
}
}
else if((dirh[i] == 1 && isbig[hw[0][i][1]] > 0) || (dirh[i] == -1 && isbig[hw[1][i][1]] > 0)) {
add_edge(cnt + i , T , INF) ;
for(int j = 1 ; j <= hnum[i] ; j ++) {
if(dirh[i] == 1) add_edge(hw[0][i][j] , cnt + i , INF) ;
else add_edge(hw[1][i][j] , cnt + i , INF) ;
}
}
else {
for(int j = 1 , x , y ; j <= hnum[i] ; j ++) {
x = hw[0][i][j] , y = hw[1][i][j] ;
if(isbig[x] > 0) swap(x , y) ;
add_edge(cnt + i , x , INF) ;
add_edge(y , cnt + i , INF) ;
}
}
}
for(int i = 1 ; i <= m ; i ++) {
if(!lnum[i]) continue ;
if((dirl[i] == 1 && isbig[lw[0][i][1]] <= 0) || (dirl[i] == -1 && isbig[lw[1][i][1]] <= 0)) {
add_edge(S , cnt + n + i , INF) ;
for(int j = 1 ; j <= lnum[i] ; j ++) {
if(dirl[i] == 1) add_edge(cnt + n + i , lw[0][i][j] , INF) ;
else add_edge(cnt + n + i , lw[1][i][j] , INF) ;
}
}
else if((dirl[i] == 1 && isbig[lw[0][i][1]] >= 0) || (dirl[i] == -1 && isbig[lw[1][i][1]] >= 0)) {
add_edge(cnt + n + i , T , INF) ;
for(int j = 1 ; j <= lnum[i] ; j ++) {
if(dirl[i] == 1) add_edge(lw[0][i][j] , cnt + n + i , INF) ;
else add_edge(lw[1][i][j] , cnt + n + i , INF) ;
}
}
else {
for(int j = 1 , x , y ; j <= lnum[i] ; j ++) {
x = lw[0][i][j] , y = lw[1][i][j] ;
if(isbig[x] > 0) swap(x , y) ;
add_edge(cnt + n + i , x , INF) ;
add_edge(y , cnt + n + i , INF) ;
}
}
} dinic() ;
printf("%d\n",ans) ;
}
return 0 ;
}

[SDOI2016]墙上的句子的更多相关文章

  1. luogu P4076 [SDOI2016]墙上的句子

    luogu loj 题意看了我半天(逃 (应该是我语文太差了) 题意是要确定每一行和每一列的看单词的顺序,使得同时正着出现和反着出现在里面的单词数量最少,每行和每列的性质是这一行所有单词反过来的单词要 ...

  2. 【LOJ】#2066. 「SDOI2016」墙上的句子

    题解 我一直也不会网络流--orz 我们分析下这道题,显然和行列没啥关系,就是想给你n + m个串 那么我们对于非回文单词之外的单词,找到两两匹配的反转单词(即使另一个反转单词不会出现也要建出来) 具 ...

  3. Solution -「SDOI 2016」「洛谷 P4076」墙上的句子

    \(\mathcal{Description}\)   Link.   (概括得说不清话了还是去看原题吧 qwq. \(\mathcal{Solution}\)   首先剔除回文串--它们一定对答案产 ...

  4. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  5. [LeetCode] Sentence Screen Fitting 调整屏幕上的句子

    Given a rows x cols screen and a sentence represented by a list of words, find how many times the gi ...

  6. BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

    #include<iostream> #include<cstdio> #include<cstring> #include<queue> #inclu ...

  7. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  8. vim 长句子中的上下移动

    当一个句子很长的时候,屏幕显示不下,就会分为多行,这个时候,你又想找到中间几行某部分的字母,怎么办?这个时候,先按下一个 g ,在按下 j / k ,就可以实现长句子的上下移动了.

  9. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

随机推荐

  1. Linux 的 Socket IO 模型

    前言 之前有看到用很幽默的方式讲解Windows的socket IO模型,借用这个故事,讲解下linux的socket IO模型: 老陈有一个在外地工作的女儿,不能经常回来,老陈和她通过信件联系. 他 ...

  2. VB和VB.NET有什么区别

    作为VB6.0的后续版本,VB.NET更加稳定,而且完全面向对象.也许你还记得,VB6.0部支持继承.重载和接口,所以不是真正面向对象的.而VB.NET则支持这些面向对象特性.VB6.0有两个薄弱环节 ...

  3. Android Activity与远程Service的通信学习总结

    当一个Service在androidManifest中被声明为 process=":remote", 或者是还有一个应用程序中的Service时,即为远程Service, 远程的意 ...

  4. 安装BIRT Chart Engine的时候,提示Cannot complete the install because one or more required items could not be

    http://wiki.eclipse.org/BIRT_Update_Site_URL 每个eclipse对应的BIRT版本 help-install new software: http://do ...

  5. Android之键盘监听的执行机理【看清键盘监听的本质】【入门版】

    以EditText为例: 1.Activity本身也有按键监听 editText按键监听与Activity按键监听关系: Activity本身也有按键监听 并且分按下和松开两个事件监听 editTex ...

  6. envoy

    微服务意味着网络更加依赖于服务抽象边界. 随着相互依赖的服务数量日渐增长,系统100%没问题的时间会变少,整个系统经常有部分功能处于降级状态.

  7. [NOI2018] 归程 可持久化并查集

    题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个n 个节点.m 条边的无向连通图(节点的编号从 1至 n).我们依次用 l,a描述一条边的长度.海拔. ...

  8. css难点总结

    1 margin 2 各种布局 3 各种垂直居中

  9. 【Selenium】idea导入eclisp项目的问题

    ①导入:file→new→Project from exiting 选择ecliesp 然后next就可以 ②添加依赖:每个包都要加,引用其他包的类,也要添加依赖 setting选择junit4

  10. facebook Presto SQL分析引擎——本质上和spark无异,分解stage,task,MR计算

    Presto 是由 Facebook 开源的大数据分布式 SQL 查询引擎,适用于交互式分析查询,可支持众多的数据源,包括 HDFS,RDBMS,KAFKA 等,而且提供了非常友好的接口开发数据源连接 ...