A - Collecting Bugs

Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64u

Appoint description: 
System Crawler  (2014-05-15)

Description

Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stuff, he collects software bugs. When Ivan gets a new program, he classifies all possible bugs into n categories. Each day he discovers exactly one bug in the program and adds information about it and its category into a spreadsheet. When he finds bugs in all bug categories, he calls the program disgusting, publishes this spreadsheet on his home page, and forgets completely about the program. 
Two companies, Macrosoft and Microhard are in tight competition. Microhard wants to decrease sales of one Macrosoft program. They hire Ivan to prove that the program in question is disgusting. However, Ivan has a complicated problem. This new program has s subcomponents, and finding bugs of all types in each subcomponent would take too long before the target could be reached. So Ivan and Microhard agreed to use a simpler criteria --- Ivan should find at least one bug in each subsystem and at least one bug of each category. 
Macrosoft knows about these plans and it wants to estimate the time that is required for Ivan to call its program disgusting. It's important because the company releases a new version soon, so it can correct its plans and release it quicker. Nobody would be interested in Ivan's opinion about the reliability of the obsolete version. 
A bug found in the program can be of any category with equal probability. Similarly, the bug can be found in any given subsystem with equal probability. Any particular bug cannot belong to two different categories or happen simultaneously in two different subsystems. The number of bugs in the program is almost infinite, so the probability of finding a new bug of some category in some subsystem does not reduce after finding any number of bugs of that category in that subsystem. 
Find an average time (in days of Ivan's work) required to name the program disgusting.

Input

Input file contains two integer numbers, n and s (0 < n, s <= 1 000).

Output

Output the expectation of the Ivan's working days needed to call the program disgusting, accurate to 4 digits after the decimal point.

Sample Input

1 2

Sample Output

3.0000

题意及分析:
转自:http://blog.csdn.net/morgan_xww/article/details/6774708
 dp求期望的题。 
  • 题意:一个软件有s个子系统,会产生n种bug。
  • 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。
  • 求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。
  • 需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,
  • 属于某种类型的概率是1/n。
  • 解法:
  • dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
  • 显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
  • dp[i][j]状态可以转化成以下四种:
  • dp[i][j]    发现一个bug属于已经找到的i种bug和j个子系统中
  • dp[i+1][j]  发现一个bug属于新的一种bug,但属于已经找到的j种子系统
  • dp[i][j+1]  发现一个bug属于已经找到的i种bug,但属于新的子系统
  • dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
  • 以上四种的概率分别为:
  • p1 =     i*j / (n*s)
  • p2 = (n-i)*j / (n*s)
  • p3 = i*(s-j) / (n*s)
  • p4 = (n-i)*(s-j) / (n*s)
  • 又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
  • 所以:
  • dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
  • 整理得:
  • dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )
  • = ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )
 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#include<vector>
#include<set> #define N 1005
#define M 100000
#define inf 1000000007
#define mod 1000000007
#define mod2 100000000
#define ll long long
#define maxi(a,b) (a)>(b)? (a) : (b)
#define mini(a,b) (a)<(b)? (a) : (b) using namespace std; int n;
int s;
double dp[N][N];
double p1,p2; void ini()
{
memset(dp,,sizeof(dp));
p1=(1.0)*/n;
p2=(1.0)/s;
// printf(" %.4f %.4f\n",p1,p2);
} void solve()
{
int i,j;
for(i=n;i>=;i--){
for(j=s;j>=;j--){
if(i==n && j==s) continue;
dp[i][j]=+dp[i+][j]*p1*(n-i)*p2*j+dp[i][j+]*p1*i*p2*(s-j)
+dp[i+][j+]*p1*(n-i)*p2*(s-j);
dp[i][j]/=(-p1*i*p2*j);
}
} // for(i=n;i>=0;i--){
// for(j=s;j>=0;j--){
// printf(" i=%d j=%d dp=%.4f\n",i,j,dp[i][j]);
// }
//}
} void out()
{
printf("%.4f\n",dp[][]);
} int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
//scanf("%d",&T);
// for(int cnt=1;cnt<=T;cnt++)
// while(T--)
while(scanf("%d%d",&n,&s)!=EOF)
{
ini();
solve();
out();
}
return ;
}

POJ 2096 (dp求期望)的更多相关文章

  1. Poj 2096 (dp求期望 入门)

    / dp求期望的题. 题意:一个软件有s个子系统,会产生n种bug. 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中. 求找到所有的n种bug,且每个子系统都找到bug,这样所要 ...

  2. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  3. hdu4035 Maze (树上dp求期望)

    dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) 2.找到出口,走出迷宫 ...

  4. POJ2096 Collecting Bugs(概率DP,求期望)

    Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...

  5. HDU 3853 LOOP (概率DP求期望)

    D - LOOPS Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St ...

  6. Poj 2096 Collecting Bugs (概率DP求期望)

    C - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

  7. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  8. POJ 2096 找bug 期望dp

    题目大意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcompon ...

  9. loj 1038(dp求期望)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25915 题意:求一个数不断地除以他的因子,直到变成1的时候 除的次 ...

随机推荐

  1. Synchronized关键字整理

    Synchronized关键字整理 作用:能够保证在同一时刻最多只有一个线程执行该段代码,以达到保证并发安全效果. 两个用法: 1.对象锁: 包括方法锁(默认锁对象为this当前实例对象)和同步代码块 ...

  2. python基础一 day14 复习

    迭代器和生成器迭代器:双下方法 : 很少直接调用的方法.一般情况下,是通过其他语法触发的可迭代的 —— 可迭代协议 含有__iter__的方法('__iter__' in dir(数据))可迭代的一定 ...

  3. 初涉tarjan缩点

    tarjan缩点:口胡过好多题,不过从来没写过…… 什么是缩点 tarjan和Kosaraju.Gabow算法一样,是为了求有向图中的强连通分量.因为有向图中大多数情况下会有环存在,而有环是一个不甚好 ...

  4. Tcp 三次握手 四次分手

    看了 余晟以为的 “tcp没那么难吧”,算是对三次握手,四次分手有了一点点理解,记录下来以方便自己以后的查看. 原文链接:https://mp.weixin.qq.com/s?__biz=MzA3MD ...

  5. 五:SQL语句中的数据类型

    一:MySQL数据类型 MySQL中定义数据字段的类型对你数据库的优化是非常重要的 MySQL支持多种数据类型,大致可以分为三类:数值 日期/时间和字符串 二.数值类型(12) 2.1.整数类型(6) ...

  6. 如何把握好 transition 和 animation 的时序,创作描边按钮特效

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/mKdzZM 可交互视频教 ...

  7. 身为前端开发工程师,你需要了解的搜索引擎优化SEO.

    网站url网站创建具有良好描述性.规范.简单的url,有利于用户更方便的记忆和判断网页的内容,也有利于搜索引擎更有效的抓取您的网站.网站设计之初,就应该有合理的url规划. 处理方式: 1.在系统中只 ...

  8. 日志logging

    日志: 日志分为5个级别:debug(10),info(20),warning(30),error(40),critical(50) 日志四个组成部分:logger,handler,filter,fo ...

  9. 多线程并发情况下 重复insert问题

    代码逻辑: if(数据不存在){ insert(); } 线程启动后,发现数据库表中有相同的记录 解决方案 synchronized同步代码块即加同步锁,synchronized同步代码块的功能: 当 ...

  10. LeetCode(111) Minimum Depth of Binary Tree

    题目 Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the s ...