本题就是给出一组cities。然后以下会询问,两个cities之间的最短路径。

属于反复询问的问题,临时我仅仅想到使用Dijsktra+heap实现了。

由于本题反复查询次数也不多,故此假设保存全部最短路径,那么是得不偿失了。

所以还是反复使用Dijsktra吧。

有没有更加好的办法处理反复查询问题呢?还没想到。

本算法纯粹手工打造了,不使用stl。代码非常长非常长,光打一遍就会手软的,呵呵。

原题:

You are given a list of cities. Each direct connection between two cities has its transportation cost (an integer bigger than 0). The goal is to find the paths of minimum cost between pairs of cities. Assume that the cost of each path (which is the sum of costs
of all direct connections belongning to this path) is at most 200000. The name of a city is a string containing characters a,...,z and is at most 10 characters long.

Input

s [the number of tests <= 10]
n [the number of cities <= 10000]
NAME [city name]
p [the number of neighbours of city NAME]
nr cost [nr - index of a city connected to NAME (the index of the first city is 1)]
[cost - the transportation cost]
r [the number of paths to find <= 100]
NAME1 NAME2 [NAME1 - source, NAME2 - destination]
[empty line separating the tests]

Output

cost [the minimum transportation cost from city NAME1 to city NAME2 (one per line)]

Example

Input:
1
4
gdansk
2
2 1
3 3
bydgoszcz
3
1 1
3 1
4 4
torun
3
1 3
2 1
4 1
warszawa
2
2 4
3 1
2
gdansk warszawa
bydgoszcz warszawa Output:
3
2

#pragma once
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <string>
#include <map>
using namespace std; class TheShortestPath15
{
struct Node
{
int des, weight;
Node *next;
Node(int d, int w) : des(d), weight(w), next(NULL) {}
}; struct AdjList
{
Node *head;
AdjList() : head(NULL) {}
}; struct Graph
{
int v;
AdjList *arr;
Graph(int v1) : v(v1)
{
arr = new AdjList[v];
}
~Graph()
{
for (int i = 0; i < v; i++)
{
Node *h = arr[i].head;
while (h)
{
Node *next = h->next;
delete h, h = NULL;
h = next;
}
}
delete arr, arr = NULL;
}
}; void addEdge(Graph *gra, int src, int des, int w)
{
Node *n = new Node(des, w);
n->next = gra->arr[src].head;
gra->arr[src].head = n;
/*
n = new Node(src, w);
n->next = gra->arr[des].head;
gra->arr[des].head = n;
*/
} struct HeapNode
{
int v, dist;
explicit HeapNode(int v1, int d) : v(v1), dist(d) {}
}; struct Heap
{
int size, cap;
int *pos;
HeapNode **arr;
Heap(int c) : cap(c), size(0)
{
pos = new int[c];
arr = new HeapNode*[c];
}
~Heap()
{
delete [] pos, pos = NULL;
for (int i = 0; i < size; i++)
{
if (arr[i]) delete arr[i], arr[i] = NULL;
}
delete [] arr;
}
}; void swapHeapNodes(HeapNode **a, HeapNode **b)
{
HeapNode *c = *a;
*a = *b;
*b = c;
} void heapify(Heap *heap, int node)
{
if (!heap) return ;
int minN = node;
int left = (node<<1) + 1;
int right = (node<<1) + 2; if (left < heap->size &&
heap->arr[left]->dist < heap->arr[minN]->dist) minN = left; if (right < heap->size &&
heap->arr[right]->dist < heap->arr[minN]->dist) minN = right; if (minN != node)
{
heap->pos[heap->arr[minN]->v] = node;
heap->pos[heap->arr[node]->v] = minN; swapHeapNodes(&heap->arr[minN], &heap->arr[node]); heapify(heap, minN);
}
} inline bool isEmpty(Heap *heap)
{
return heap->size == 0;
} HeapNode *extraMin(Heap *heap)
{
if (isEmpty(heap)) return NULL; HeapNode *root = heap->arr[0];
HeapNode *last = heap->arr[heap->size-1];
heap->arr[0] = last;//别漏了这步。 heap->pos[root->v] = heap->size-1;
heap->pos[last->v] = 0; --heap->size; //别忘记先--
heapify(heap, 0); return root;
} void decreaseKey(Heap *heap, int v, int dist)
{
int i = heap->pos[v]; heap->arr[i]->dist = dist; while (i && heap->arr[i]->dist < heap->arr[(i-1)>>1]->dist)
{
heap->pos[heap->arr[i]->v] = (i-1)>>1;
heap->pos[heap->arr[(i-1)>>1]->v] = i; swapHeapNodes(&heap->arr[i], &heap->arr[(i-1)>>1]); i = (i-1)>>1;
}
} inline bool isInHeap(Heap *heap, int v)
{
return heap->pos[v] < heap->size;
} void dijsktra(Graph *gra, int src, int des, int dist[])
{
Heap *heap = new Heap(gra->v);
heap->size = gra->v; for (int i = 0; i < gra->v; i++)
{
dist[i] = INT_MAX;
heap->pos[i] = i;
heap->arr[i] = new HeapNode(i, dist[i]);
} dist[src] = 0;
decreaseKey(heap, src, 0); while (!isEmpty(heap))
{
HeapNode *hn = extraMin(heap);
int u = hn->v;
delete hn, hn = NULL; if (u == des) break; //这里添加代码。仅仅找到目标节点就可返回了
if (dist[u] == INT_MAX) break; Node *n = gra->arr[u].head;
while (n)
{
if (isInHeap(heap, n->des) &&
n->weight + dist[u] < dist[n->des])
{
dist[n->des] = n->weight + dist[u];
decreaseKey(heap, n->des, dist[n->des]);
}
n = n->next;
}
}
delete heap;
} public:
TheShortestPath15()
{
int s, n, p, nr, cost, r;
map<string, int> cities;
string name;
scanf("%d", &s);
while (s--)
{
scanf("%d", &n);
Graph *gra = new Graph(n);
for (int i = 0; i < n; i++)
{
//gets(NAME);教训:gets是取到\n或者EOF结束的,不是取单个单词
cin>>name;
cities[name] = i; scanf("%d", &p);
while (p--)
{
scanf("%d %d", &nr, &cost);
addEdge(gra, i, nr-1, cost);
}
}
scanf("%d", &r);
while (r--)
{
cin>>name;
int src = cities[name]; cin>>name;
int des = cities[name]; int *dist = (int *) malloc(sizeof(int) * n);
dijsktra(gra, src, des, dist);
printf("%d\n", dist[des]);
if (dist) free(dist);
}
delete gra;
}
}
};

SPOJ 15. The Shortest Path 最短路径题解的更多相关文章

  1. SPOJ 15. The Shortest Path 堆优化Dijsktra

    You are given a list of cities. Each direct connection between two cities has its transportation cos ...

  2. [Swift]LeetCode847. 访问所有节点的最短路径 | Shortest Path Visiting All Nodes

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  3. 最短路径遍历所有的节点 Shortest Path Visiting All Nodes

    2018-10-06 22:04:38 问题描述: 问题求解: 本题要求是求遍历所有节点的最短路径,由于本题中是没有要求一个节点只能访问一次的,也就是说可以访问一个节点多次,但是如果表征两次节点状态呢 ...

  4. ZOJ 2760 How Many Shortest Path(最短路径+最大流)

    Description Given a weighted directed graph, we define the shortest path as the path who has the sma ...

  5. AOJ GRL_1_C: All Pairs Shortest Path (Floyd-Warshall算法求任意两点间的最短路径)(Bellman-Ford算法判断负圈)

    题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_C All Pairs Shortest Path Input ...

  6. AOJ GRL_1_B: Shortest Path - Single Source Shortest Path (Negative Edges) (Bellman-Frod算法求负圈和单源最短路径)

    题目链接: http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_B   Single Source Shortest Path ...

  7. 程序员的算法课(19)-常用的图算法:最短路径(Shortest Path)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  8. [LeetCode] 847. Shortest Path Visiting All Nodes 访问所有结点的最短路径

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  9. HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

随机推荐

  1. Java基础(十二)--clone()方法

    Clone在Java中就是用来复制对象,通过分配一个和源对象相同大小的内存空间,然后创建一个新的对象,那么他和=的区别在哪? 通过=实现对象拷贝: @Data @NoArgsConstructor @ ...

  2. 09Windows编程

    Windows编程 2.1      窗口 Windows应用程序一般都有一个窗口,窗口是运行程序与外界交换信息的界面.一个典型的窗口包括标题栏.最小化按钮.最大/还原按钮.关闭按钮.系统菜单图标.菜 ...

  3. 第3节 mapreduce高级:8、9、自定义分区实现分组求取top1

    自定义GroupingComparator求取topN GroupingComparator是mapreduce当中reduce端的一个功能组件,主要的作用是决定哪些数据作为一组,调用一次reduce ...

  4. 基于Redis的三种分布式爬虫策略

    前言: 爬虫是偏IO型的任务,分布式爬虫的实现难度比分布式计算和分布式存储简单得多. 个人以为分布式爬虫需要考虑的点主要有以下几个: 爬虫任务的统一调度 爬虫任务的统一去重 存储问题 速度问题 足够“ ...

  5. 【转】C语言中access函数

    头文件:unistd.h 功 能: 确定文件或文件夹的访问权限.即,检查某个文件的存取方式,比如说是只读方式.只写方式等.如果指定的存取方式有效,则函数返回0,否则函数返回-1. 用 法: int a ...

  6. mysql常用命令用法

    Mysql帮助文档地址:http://dev.mysql.com/doc/ 1.创建数据库: create database database_name; 2.选择数据库: use database_ ...

  7. nginx+redis安装配置(内存型数据库)实现session的共享

    注意:借鉴原文章:http://www.cnblogs.com/roy-blog/p/7196054.html 感兴趣的可以加一下481845043 java交流群,共同进步. 1 session的概 ...

  8. django 使用框架下auth.models自带的User进行扩展增加字段

    需要改动三个地方: 1.models.py   创建模型User,并继承原模型类AbstraUser(在此处我增加了一个新的字段手机号) from django.db import models # ...

  9. linux上uwsgi+nginx+django发布项目

    在发布项目前首先将部署环境进行搭建,尤其是依赖包一定需要提前安装. 一.虚拟环境的搭建 1.建议在linux下新建一个虚拟环境,这样有独立干净的环境. mkvirtualenv -p python3 ...

  10. Why Countries Succeed and Fail Economically

    Countries Succeed and Fail Economically(第一部分)" title="Why Countries Succeed and Fail Econo ...