SPOJ 15. The Shortest Path 最短路径题解
本题就是给出一组cities。然后以下会询问,两个cities之间的最短路径。
属于反复询问的问题,临时我仅仅想到使用Dijsktra+heap实现了。
由于本题反复查询次数也不多,故此假设保存全部最短路径,那么是得不偿失了。
所以还是反复使用Dijsktra吧。
有没有更加好的办法处理反复查询问题呢?还没想到。
本算法纯粹手工打造了,不使用stl。代码非常长非常长,光打一遍就会手软的,呵呵。
原题:
You are given a list of cities. Each direct connection between two cities has its transportation cost (an integer bigger than 0). The goal is to find the paths of minimum cost between pairs of cities. Assume that the cost of each path (which is the sum of costs
of all direct connections belongning to this path) is at most 200000. The name of a city is a string containing characters a,...,z and is at most 10 characters long.
Input
s [the number of tests <= 10]
n [the number of cities <= 10000]
NAME [city name]
p [the number of neighbours of city NAME]
nr cost [nr - index of a city connected to NAME (the index of the first city is 1)]
[cost - the transportation cost]
r [the number of paths to find <= 100]
NAME1 NAME2 [NAME1 - source, NAME2 - destination]
[empty line separating the tests]
Output
cost [the minimum transportation cost from city NAME1 to city NAME2 (one per line)]
Example
Input:
1
4
gdansk
2
2 1
3 3
bydgoszcz
3
1 1
3 1
4 4
torun
3
1 3
2 1
4 1
warszawa
2
2 4
3 1
2
gdansk warszawa
bydgoszcz warszawa Output:
3
2
#pragma once
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <string>
#include <map>
using namespace std; class TheShortestPath15
{
struct Node
{
int des, weight;
Node *next;
Node(int d, int w) : des(d), weight(w), next(NULL) {}
}; struct AdjList
{
Node *head;
AdjList() : head(NULL) {}
}; struct Graph
{
int v;
AdjList *arr;
Graph(int v1) : v(v1)
{
arr = new AdjList[v];
}
~Graph()
{
for (int i = 0; i < v; i++)
{
Node *h = arr[i].head;
while (h)
{
Node *next = h->next;
delete h, h = NULL;
h = next;
}
}
delete arr, arr = NULL;
}
}; void addEdge(Graph *gra, int src, int des, int w)
{
Node *n = new Node(des, w);
n->next = gra->arr[src].head;
gra->arr[src].head = n;
/*
n = new Node(src, w);
n->next = gra->arr[des].head;
gra->arr[des].head = n;
*/
} struct HeapNode
{
int v, dist;
explicit HeapNode(int v1, int d) : v(v1), dist(d) {}
}; struct Heap
{
int size, cap;
int *pos;
HeapNode **arr;
Heap(int c) : cap(c), size(0)
{
pos = new int[c];
arr = new HeapNode*[c];
}
~Heap()
{
delete [] pos, pos = NULL;
for (int i = 0; i < size; i++)
{
if (arr[i]) delete arr[i], arr[i] = NULL;
}
delete [] arr;
}
}; void swapHeapNodes(HeapNode **a, HeapNode **b)
{
HeapNode *c = *a;
*a = *b;
*b = c;
} void heapify(Heap *heap, int node)
{
if (!heap) return ;
int minN = node;
int left = (node<<1) + 1;
int right = (node<<1) + 2; if (left < heap->size &&
heap->arr[left]->dist < heap->arr[minN]->dist) minN = left; if (right < heap->size &&
heap->arr[right]->dist < heap->arr[minN]->dist) minN = right; if (minN != node)
{
heap->pos[heap->arr[minN]->v] = node;
heap->pos[heap->arr[node]->v] = minN; swapHeapNodes(&heap->arr[minN], &heap->arr[node]); heapify(heap, minN);
}
} inline bool isEmpty(Heap *heap)
{
return heap->size == 0;
} HeapNode *extraMin(Heap *heap)
{
if (isEmpty(heap)) return NULL; HeapNode *root = heap->arr[0];
HeapNode *last = heap->arr[heap->size-1];
heap->arr[0] = last;//别漏了这步。 heap->pos[root->v] = heap->size-1;
heap->pos[last->v] = 0; --heap->size; //别忘记先--
heapify(heap, 0); return root;
} void decreaseKey(Heap *heap, int v, int dist)
{
int i = heap->pos[v]; heap->arr[i]->dist = dist; while (i && heap->arr[i]->dist < heap->arr[(i-1)>>1]->dist)
{
heap->pos[heap->arr[i]->v] = (i-1)>>1;
heap->pos[heap->arr[(i-1)>>1]->v] = i; swapHeapNodes(&heap->arr[i], &heap->arr[(i-1)>>1]); i = (i-1)>>1;
}
} inline bool isInHeap(Heap *heap, int v)
{
return heap->pos[v] < heap->size;
} void dijsktra(Graph *gra, int src, int des, int dist[])
{
Heap *heap = new Heap(gra->v);
heap->size = gra->v; for (int i = 0; i < gra->v; i++)
{
dist[i] = INT_MAX;
heap->pos[i] = i;
heap->arr[i] = new HeapNode(i, dist[i]);
} dist[src] = 0;
decreaseKey(heap, src, 0); while (!isEmpty(heap))
{
HeapNode *hn = extraMin(heap);
int u = hn->v;
delete hn, hn = NULL; if (u == des) break; //这里添加代码。仅仅找到目标节点就可返回了
if (dist[u] == INT_MAX) break; Node *n = gra->arr[u].head;
while (n)
{
if (isInHeap(heap, n->des) &&
n->weight + dist[u] < dist[n->des])
{
dist[n->des] = n->weight + dist[u];
decreaseKey(heap, n->des, dist[n->des]);
}
n = n->next;
}
}
delete heap;
} public:
TheShortestPath15()
{
int s, n, p, nr, cost, r;
map<string, int> cities;
string name;
scanf("%d", &s);
while (s--)
{
scanf("%d", &n);
Graph *gra = new Graph(n);
for (int i = 0; i < n; i++)
{
//gets(NAME);教训:gets是取到\n或者EOF结束的,不是取单个单词
cin>>name;
cities[name] = i; scanf("%d", &p);
while (p--)
{
scanf("%d %d", &nr, &cost);
addEdge(gra, i, nr-1, cost);
}
}
scanf("%d", &r);
while (r--)
{
cin>>name;
int src = cities[name]; cin>>name;
int des = cities[name]; int *dist = (int *) malloc(sizeof(int) * n);
dijsktra(gra, src, des, dist);
printf("%d\n", dist[des]);
if (dist) free(dist);
}
delete gra;
}
}
};
SPOJ 15. The Shortest Path 最短路径题解的更多相关文章
- SPOJ 15. The Shortest Path 堆优化Dijsktra
You are given a list of cities. Each direct connection between two cities has its transportation cos ...
- [Swift]LeetCode847. 访问所有节点的最短路径 | Shortest Path Visiting All Nodes
An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...
- 最短路径遍历所有的节点 Shortest Path Visiting All Nodes
2018-10-06 22:04:38 问题描述: 问题求解: 本题要求是求遍历所有节点的最短路径,由于本题中是没有要求一个节点只能访问一次的,也就是说可以访问一个节点多次,但是如果表征两次节点状态呢 ...
- ZOJ 2760 How Many Shortest Path(最短路径+最大流)
Description Given a weighted directed graph, we define the shortest path as the path who has the sma ...
- AOJ GRL_1_C: All Pairs Shortest Path (Floyd-Warshall算法求任意两点间的最短路径)(Bellman-Ford算法判断负圈)
题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_C All Pairs Shortest Path Input ...
- AOJ GRL_1_B: Shortest Path - Single Source Shortest Path (Negative Edges) (Bellman-Frod算法求负圈和单源最短路径)
题目链接: http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_B Single Source Shortest Path ...
- 程序员的算法课(19)-常用的图算法:最短路径(Shortest Path)
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...
- [LeetCode] 847. Shortest Path Visiting All Nodes 访问所有结点的最短路径
An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...
- HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)
Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...
随机推荐
- vue面试相关
(1)什么是mvvm? MVVM是Model-View-ViewModel的缩写.mvvm是一种设计思想.Model 层代表数据模型,也可以在Model中定义数据修改和操作的业务逻辑:View ...
- Domain Adaptation论文笔记
领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今 ...
- 05CSS链接
CSS链接 链接的四种状态: • a:link - 普通的.未被访问的链接 • a:visited - 用户已访问的链接 • a:hover - 鼠标指针位于链接的上方 • a:active ...
- C#readonly 关键字与 const 关键字的区别
1. const 字段只能在该字段的声明中初始化,readonly 字段可以在声明或构造函数中初始化.因此,根据所使用的构造函数,readonly 字段可能具有不同的值. 2. const 字段是编译 ...
- 网络测速命令--speedtest
网络测速 speedtest-cli 顾名思义,这个命令为网络测速命令,基于Python编写,测试系统网络的上传下载速度,GitHub托管的项目地址,以下列出常见的用法 安装命令 pip instal ...
- .net+EF+mvc通过EasyUI的DataGrid实现增删改查
@{ Layout = null;} <!DOCTYPE html> <html><head> <meta name="viewport ...
- snowflake机器标识自动绑定
首先附上snowflake源码 package com.yunyihenkey.common.idworker; /** * Twitter_Snowflake<br> * SnowFla ...
- day02 python函数基础
'''''''''列表: 定义: 在[]内,可以存放多个任意类型的值, 并以逗号隔开. 一般用于存放学生的爱好,课堂的周期等等...'''# 定义一个学生列表,可存放多个学生# list(['钱垚', ...
- PHP:Mysql判断KEY是否存在 如果存在走修改 如果不存在走添加
文章来源:http://www.cnblogs.com/hello-tl/p/7738113.html 0.PHP代码 <?php /** * POST 传参 * * 例子 添加修改 使用同一个 ...
- MySQL-----增
增 **创建用户** create user 'alex'@'192.168.1.1' identified by '123123'; create user 'alex'@'192.168.1.%' ...