Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) E. Prairie Partition 二分+贪心
It can be shown that any positive integer x can be uniquely represented as x = 1 + 2 + 4 + ... + 2k - 1 + r, where k and r are integers, k ≥ 0, 0 < r ≤ 2k. Let's call that representation prairie partition of x.
For example, the prairie partitions of 12, 17, 7 and 1 are:
12 = 1 + 2 + 4 + 5,
17 = 1 + 2 + 4 + 8 + 2,
7 = 1 + 2 + 4,
1 = 1.
Alice took a sequence of positive integers (possibly with repeating elements), replaced every element with the sequence of summands in its prairie partition, arranged the resulting numbers in non-decreasing order and gave them to Borys. Now Borys wonders how many elements Alice's original sequence could contain. Find all possible options!
The first line contains a single integer n (1 ≤ n ≤ 105) — the number of numbers given from Alice to Borys.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1012; a1 ≤ a2 ≤ ... ≤ an) — the numbers given from Alice to Borys.
Output, in increasing order, all possible values of m such that there exists a sequence of positive integers of length m such that if you replace every element with the summands in its prairie partition and arrange the resulting numbers in non-decreasing order, you will get the sequence given in the input.
If there are no such values of m, output a single integer -1.
8
1 1 2 2 3 4 5 8
2
In the first example, Alice could get the input sequence from [6, 20] as the original sequence.
In the second example, Alice's original sequence could be either [4, 5] or [3, 3, 3].
题意:
每个数都可以表示成2的连续次方和加上一个r
例如:12 = 1 + 2 + 4 + 5,
17 = 1 + 2 + 4 + 8 + 2,
现在给你这些数,让你反过来组成12,17,但是是有不同方案的
看看样列就懂了,问你方案的长度种类
题解:
将所有连续的2^x,处理出来,假设有now个序列
最后剩下的数,我们必须将其放到上面now的尾端,但是我们优先放与当前值最接近的序列尾端,以防大一些的数仍然有位置可以放
处理出满足条件最多序列数
二分最少的能满足条件的序列数,也就是将mid个序列全部插入到上面now-mid个序列尾端,这里贪心选择2^x,x小的
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 1e5+, M = 1e3+, mod = 1e9+,inf = 2e9; LL H[],a[N];
int No,cnt[N],n,cnts;
vector<LL > G,ans;
vector<LL > all[N];
int sum[N],sum2[N];
pair<int,LL> P[N]; void go(LL x) {
int i;
for(i = ; i <= ; ++i) {
if(x < H[i])
break;
}
i--;
for(int j = ; j <= i; ++j) {
cnt[j]--;
if(cnt[j] < ) No = ;
return ;
}
}
int cango(LL x) {
if(x == ) return ;
int ok = ;
for(int i = ; i <= ; ++i) {
if(H[i] <= x) {
cnt[i]--;
if(cnt[i] < ) {
ok = ;
}
}
}
if(ok) {
for(int i = ; i <= ; ++i)
if(H[i] <= x) cnt[i]++;
return ;
}
else return ;
}
int can(LL now) {
for(int i = G.size()-; i >= ; --i) {
int ok = ;
for(int j = ; j <= ; ++j) {
if(G[i] <= H[j] && sum[j-]) {
sum[j-]--;
P[++cnts] = MP(j-,G[i]);
ok = ;
G.pop_back();
break;
}
}
if(!ok) return ;
}
return ;
}
int allcan(int x) {
int j = x+,i = ;
int ok;
while(j <= cnts && i < G.size()) {
if(P[j].second != ) j++;
else if(H[P[j].first+] < G[i]) j++;
else i++,j++;
}
if(i == G.size()) {
return ;
}
else return ;
}
int check(int x) {
x = cnts - x;
if(x > cnts) return ;
if(x == ) return ;
G.clear();
for(int i = ; i <= x; i++) {
for(int j = ; j <= P[i].first; ++j) {
G.push_back(H[j]);
}
if(P[i].second) {
G.push_back(P[i].second);
}
}
//for(int i = 0; i < G.size(); ++i) cout<<G[i]<<" ";cout<<endl;
if(allcan(x)) {
return ;
}
else return ;
}
int main() {
H[] = ;
for(int i = ; i <= ; ++i)H[i] = H[i-]*2LL;
scanf("%d",&n);
for(int i = ; i <= n; ++i) {
scanf("%I64d",&a[i]);
int ok = ;
for(int j = ; j <= ; ++j) {
if(a[i] == H[j]) {
ok = ;
cnt[j]++;
break;
}
}
if(!ok) G.push_back(a[i]);
}
int now = ;
for(int i = ; i >=; --i) {
while(cnt[i]) {
if(cango(H[i])) {
now++;
sum[i]++;
}
else break;
}
}
for(int i = ; i <= ; ++i)
for(int j = ; j <= cnt[i]; ++j) G.push_back(H[i]);
int l= ,r,ans = -,tmpr;
if(can(now)) r = now;
else r = -;
tmpr = r;
for(int i = ; i <= ; ++i) {
for(int j = ; j <= sum[i]; ++j) {
P[++cnts] = MP(i,);
}
}
sort(P+,P+cnts+);
while(l <= r) {
int md = (l + r) >> ;
if(check(md)) {
ans = md;
r = md-;
}
else l = md+;
}
//cout<<ans<<endl;
if(tmpr == -) puts("-1");
else {
for(int i = ans; i <= tmpr; ++i) cout<<i<<" ";
cout<<endl;
}
return ;
}
/*
5
1 2 3 4 5
*/
Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) E. Prairie Partition 二分+贪心的更多相关文章
- Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3)(A.B.C,3道暴力题,C可二分求解)
A. Is it rated? time limit per test:2 seconds memory limit per test:256 megabytes input:standard inp ...
- Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) A B C D 水 模拟 二分 贪心
A. Is it rated? time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) D - Dynamic Problem Scoring
地址:http://codeforces.com/contest/807/problem/D 题目: D. Dynamic Problem Scoring time limit per test 2 ...
- Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) A Is it rated?
地址:http://codeforces.com/contest/807/problem/C 题目: C. Success Rate time limit per test 2 seconds mem ...
- Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) 菜鸡只会ABC!
Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) 全场题解 菜鸡只会A+B+C,呈上题解: A. Bear and ...
- Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2)(A.思维题,B.思维题)
A. Vicious Keyboard time limit per test:2 seconds memory limit per test:256 megabytes input:standard ...
- Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) C. Bear and Different Names 贪心
C. Bear and Different Names 题目连接: http://codeforces.com/contest/791/problem/C Description In the arm ...
- Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) B - Bear and Friendship Condition 水题
B. Bear and Friendship Condition 题目连接: http://codeforces.com/contest/791/problem/B Description Bear ...
- Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2) D. Volatile Kite
地址:http://codeforces.com/contest/801/problem/D 题目: D. Volatile Kite time limit per test 2 seconds me ...
随机推荐
- svn服务
svn服务实战应用指南 1.1 svn介绍 什么是svn? svn(sub-version)是近年来崛起的非常优秀的版本管理工具,与cvs管理工具一样,svn是一个跨平台的开源的版本控制系统, ...
- 转: 使用 /sys 文件系统访问 Linux 内核
转一个挺不错的文章 使用 /sys 文件系统访问 Linux 内核 https://www.ibm.com/developerworks/cn/linux/l-cn-sysfs/ 如果你正在开发的设备 ...
- python基础知识01-数据类型和序列类型
%,取余 //,取整,向下取整,5//2 = 2. 一.变量类型 1.变量名不能以数字开头,不能纯数字,不要用汉字,可以用下划线开头 2.数值类型(int,float,bool,complex) ...
- 【HIHOCODER 1163】 博弈游戏·Nim游戏
描述 今天我们要认识一对新朋友,Alice与Bob. Alice与Bob总是在进行各种各样的比试,今天他们在玩一个取石子的游戏. 在这个游戏中,Alice和Bob放置了N堆不同的石子,编号1..N,第 ...
- laravel(4.2) +Zizaco
操作步骤:https://github.com/Zizaco/entrust/tree/1.0 这篇博客说的蛮详细的:http://blog.boolw.com/?p=241 简化后的步骤 1.在根项 ...
- 根据不同的产品id获得不同的下拉选项 (option传多值)
<td> 没有 value 所以要在<td>里面加上input 同时text 为hidden这样就不会显示value的值 <td><select id='g ...
- POJ 1006-Biorhythms,中国剩余定理,学信安的路过!
Biorhythms 我竟然1A了, 终于从一天的浑噩中找回点自信了.人生第一次做中国剩余定理的题 ...
- html template & import link bug
html template & import link bug html templates is OK https://caniuse.com/#search=html%20template ...
- ajax请求数据之后在已经有的数据前面打对勾的方法
今天遇到这么一个需求: 选择一部分人,在点击确定的时候添加到对应的div中,也就是添加到对应的表单下面,当再次查询的时候需要在已经选过的人的复选框前面打伤对勾.
- Django学习之 - 基础视图函数
视图:Views 获取用户请求的方法: 1: request.GET 2: request.POST 3: request.FILES # checkbox 等多选文件 4:request.POST. ...