E. Prairie Partition

It can be shown that any positive integer x can be uniquely represented as x = 1 + 2 + 4 + ... + 2k - 1 + r, where k and r are integers, k ≥ 0, 0 < r ≤ 2k. Let's call that representation prairie partition of x.

For example, the prairie partitions of 12, 17, 7 and 1 are:

12 = 1 + 2 + 4 + 5,

17 = 1 + 2 + 4 + 8 + 2,

7 = 1 + 2 + 4,

1 = 1.

Alice took a sequence of positive integers (possibly with repeating elements), replaced every element with the sequence of summands in its prairie partition, arranged the resulting numbers in non-decreasing order and gave them to Borys. Now Borys wonders how many elements Alice's original sequence could contain. Find all possible options!

Input

The first line contains a single integer n (1 ≤ n ≤ 105) — the number of numbers given from Alice to Borys.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1012; a1 ≤ a2 ≤ ... ≤ an) — the numbers given from Alice to Borys.

Output

Output, in increasing order, all possible values of m such that there exists a sequence of positive integers of length m such that if you replace every element with the summands in its prairie partition and arrange the resulting numbers in non-decreasing order, you will get the sequence given in the input.

If there are no such values of m, output a single integer -1.

Examples
input
  1. 8
    1 1 2 2 3 4 5 8
output
  1. 2
Note

In the first example, Alice could get the input sequence from [6, 20] as the original sequence.

In the second example, Alice's original sequence could be either [4, 5] or [3, 3, 3].

 题意:

  每个数都可以表示成2的连续次方和加上一个r

  例如:12 = 1 + 2 + 4 + 5,

  17 = 1 + 2 + 4 + 8 + 2,

  现在给你这些数,让你反过来组成12,17,但是是有不同方案的

  看看样列就懂了,问你方案的长度种类

题解:

   将所有连续的2^x,处理出来,假设有now个序列

   最后剩下的数,我们必须将其放到上面now的尾端,但是我们优先放与当前值最接近的序列尾端,以防大一些的数仍然有位置可以放

   处理出满足条件最多序列数

  二分最少的能满足条件的序列数,也就是将mid个序列全部插入到上面now-mid个序列尾端,这里贪心选择2^x,x小的

  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. #pragma comment(linker, "/STACK:102400000,102400000")
  4. #define ls i<<1
  5. #define rs ls | 1
  6. #define mid ((ll+rr)>>1)
  7. #define pii pair<int,int>
  8. #define MP make_pair
  9. typedef long long LL;
  10. const long long INF = 1e18+1LL;
  11. const double Pi = acos(-1.0);
  12. const int N = 1e5+, M = 1e3+, mod = 1e9+,inf = 2e9;
  13.  
  14. LL H[],a[N];
  15. int No,cnt[N],n,cnts;
  16. vector<LL > G,ans;
  17. vector<LL > all[N];
  18. int sum[N],sum2[N];
  19. pair<int,LL> P[N];
  20.  
  21. void go(LL x) {
  22. int i;
  23. for(i = ; i <= ; ++i) {
  24. if(x < H[i])
  25. break;
  26. }
  27. i--;
  28. for(int j = ; j <= i; ++j) {
  29. cnt[j]--;
  30. if(cnt[j] < ) No = ;
  31. return ;
  32. }
  33. }
  34. int cango(LL x) {
  35. if(x == ) return ;
  36. int ok = ;
  37. for(int i = ; i <= ; ++i) {
  38. if(H[i] <= x) {
  39. cnt[i]--;
  40. if(cnt[i] < ) {
  41. ok = ;
  42. }
  43. }
  44. }
  45. if(ok) {
  46. for(int i = ; i <= ; ++i)
  47. if(H[i] <= x) cnt[i]++;
  48. return ;
  49. }
  50. else return ;
  51. }
  52. int can(LL now) {
  53. for(int i = G.size()-; i >= ; --i) {
  54. int ok = ;
  55. for(int j = ; j <= ; ++j) {
  56. if(G[i] <= H[j] && sum[j-]) {
  57. sum[j-]--;
  58. P[++cnts] = MP(j-,G[i]);
  59. ok = ;
  60. G.pop_back();
  61. break;
  62. }
  63. }
  64. if(!ok) return ;
  65. }
  66. return ;
  67. }
  68. int allcan(int x) {
  69. int j = x+,i = ;
  70. int ok;
  71. while(j <= cnts && i < G.size()) {
  72. if(P[j].second != ) j++;
  73. else if(H[P[j].first+] < G[i]) j++;
  74. else i++,j++;
  75. }
  76. if(i == G.size()) {
  77. return ;
  78. }
  79. else return ;
  80. }
  81. int check(int x) {
  82. x = cnts - x;
  83. if(x > cnts) return ;
  84. if(x == ) return ;
  85. G.clear();
  86. for(int i = ; i <= x; i++) {
  87. for(int j = ; j <= P[i].first; ++j) {
  88. G.push_back(H[j]);
  89. }
  90. if(P[i].second) {
  91. G.push_back(P[i].second);
  92. }
  93. }
  94. //for(int i = 0; i < G.size(); ++i) cout<<G[i]<<" ";cout<<endl;
  95. if(allcan(x)) {
  96. return ;
  97. }
  98. else return ;
  99. }
  100. int main() {
  101. H[] = ;
  102. for(int i = ; i <= ; ++i)H[i] = H[i-]*2LL;
  103. scanf("%d",&n);
  104. for(int i = ; i <= n; ++i) {
  105. scanf("%I64d",&a[i]);
  106. int ok = ;
  107. for(int j = ; j <= ; ++j) {
  108. if(a[i] == H[j]) {
  109. ok = ;
  110. cnt[j]++;
  111. break;
  112. }
  113. }
  114. if(!ok) G.push_back(a[i]);
  115. }
  116. int now = ;
  117. for(int i = ; i >=; --i) {
  118. while(cnt[i]) {
  119. if(cango(H[i])) {
  120. now++;
  121. sum[i]++;
  122. }
  123. else break;
  124. }
  125. }
  126. for(int i = ; i <= ; ++i)
  127. for(int j = ; j <= cnt[i]; ++j) G.push_back(H[i]);
  128. int l= ,r,ans = -,tmpr;
  129. if(can(now)) r = now;
  130. else r = -;
  131. tmpr = r;
  132. for(int i = ; i <= ; ++i) {
  133. for(int j = ; j <= sum[i]; ++j) {
  134. P[++cnts] = MP(i,);
  135. }
  136. }
  137. sort(P+,P+cnts+);
  138. while(l <= r) {
  139. int md = (l + r) >> ;
  140. if(check(md)) {
  141. ans = md;
  142. r = md-;
  143. }
  144. else l = md+;
  145. }
  146. //cout<<ans<<endl;
  147. if(tmpr == -) puts("-1");
  148. else {
  149. for(int i = ans; i <= tmpr; ++i) cout<<i<<" ";
  150. cout<<endl;
  151. }
  152. return ;
  153. }
  154. /*
  155. 5
  156. 1 2 3 4 5
  157. */

Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) E. Prairie Partition 二分+贪心的更多相关文章

  1. Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3)(A.B.C,3道暴力题,C可二分求解)

    A. Is it rated? time limit per test:2 seconds memory limit per test:256 megabytes input:standard inp ...

  2. Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) A B C D 水 模拟 二分 贪心

    A. Is it rated? time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  3. Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) D - Dynamic Problem Scoring

    地址:http://codeforces.com/contest/807/problem/D 题目: D. Dynamic Problem Scoring time limit per test 2 ...

  4. Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) A Is it rated?

    地址:http://codeforces.com/contest/807/problem/C 题目: C. Success Rate time limit per test 2 seconds mem ...

  5. Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) 菜鸡只会ABC!

    Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) 全场题解 菜鸡只会A+B+C,呈上题解: A. Bear and ...

  6. Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2)(A.思维题,B.思维题)

    A. Vicious Keyboard time limit per test:2 seconds memory limit per test:256 megabytes input:standard ...

  7. Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) C. Bear and Different Names 贪心

    C. Bear and Different Names 题目连接: http://codeforces.com/contest/791/problem/C Description In the arm ...

  8. Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) B - Bear and Friendship Condition 水题

    B. Bear and Friendship Condition 题目连接: http://codeforces.com/contest/791/problem/B Description Bear ...

  9. Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2) D. Volatile Kite

    地址:http://codeforces.com/contest/801/problem/D 题目: D. Volatile Kite time limit per test 2 seconds me ...

随机推荐

  1. MySQL autocommit 和 start transaction

    autocommit 和 start transaction 都是事务相关的命令.类似MyISAM的mysql引擎就不支持. autocommit 默认是ON状态,即sql语句是自动提交的 show ...

  2. 「BZOJ1537」Aut – The Bus(变形Dp+线段树/树状数组 最优值维护)

    网格图给予我的第一反应就是一个状态 f[i][j] 表示走到第 (i,j) 这个位置的最大价值. 由于只能往下或往右走转移就变得显然了: f[i][j]=max{f[i-1][j], f[i][j-1 ...

  3. Oracle中exit,return,continue

    记录exit和return的用法 exit用来跳出循环 loop IF V_KBP IS NULL THEN           EXIT;    END IF; end loop; return跳出 ...

  4. Python浅拷贝copy()与深拷贝deepcopy()区别

    其实呢,浅拷贝copy()与深拷贝deepcopy()之间的区分必须要涉及到python对于数据的存储方式. 首先直接上结论: —–我们寻常意义的复制就是深复制,即将被复制对象完全再复制一遍作为独立的 ...

  5. Codevs 1688 求逆序对

     时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 给定一个序列a1,a2,…,an,如果存在i<j并且ai>aj,那么我 ...

  6. Codeforces 513G1 513G2 Inversions problem [概率dp]

    转自九野:http://blog.csdn.net/qq574857122/article/details/43643135 题目链接:点击打开链接 题意: 给定n ,k 下面n个数表示有一个n的排列 ...

  7. msp430入门编程47

    msp430中C语言的人机交互--菜单退出 msp430入门编程 msp430入门学习

  8. 洛谷——P1596 [USACO10OCT]湖计数Lake Counting

    P1596 [USACO10OCT]湖计数Lake Counting 题目描述 Due to recent rains, water has pooled in various places in F ...

  9. Spring基础入门(二)

    一.AOP 1.AOP概念 aop:面向切面编程,扩展功能不修改源代码实现. AOP采取横向抽取机制,取代了传统纵向继承体系重复性代码. 2.AOP原理 (1)第一种情况,有接口情况,使用动态代理创建 ...

  10. 学习swift从青铜到王者之swift枚举07

    空枚举 //空枚举 enum SomeEnumeration { // enumeration definition goes here } 枚举基本类型 //枚举基本类型 enum CompassP ...