一、问题描写叙述

给定一个整数数列,寻找其按递增排序后的第k个位置上的元素。

二、问题分析

借助类似快排思想实现pation函数。再利用递归思想寻找k位置。

三、算法代码

public static int selectMinK(int [] arr, int low, int high, int k){
int index = pation(arr, low, high);
if(index == k){
return arr[index];
}
if(index < k){
return selectMinK(arr, index + 1, high, k);
}else{
return selectMinK(arr, low, index - 1, k);
}
} public static int pation(int [] arr, int low, int high){
while(low < high){
while(low < high && arr[low] <= arr[high]){//从后往前。把小的元素往前调换
high--;
}
if(low < high){
int tmp = arr[low];
arr[low] = arr[high];
arr[high] = tmp;
low++;
}
while(low < high && arr[low] <= arr[high]){//从前往后。把大的元素往后调换
low++;
}
if(low < high){
int tmp = arr[low];
arr[low] = arr[high];
arr[high] = tmp;
high--;
}
}
return low;//返回low。high相遇位置
}

四、完整測试代码

public class Solution {

	public static void main(String [] args){
int [] randArr = new int[]{5,2,8,6,3,6,9,7};
int result = selectMinK(randArr, 0, randArr.length - 1, 4);
System.out.print(result);
}
public static int selectMinK(int [] arr, int low, int high, int k){
int index = pation(arr, low, high);
if(index == k){ //若返回的下标为k,则找到目标元素
return arr[index];
}
if(index < k){
return selectMinK(arr, index + 1, high, k);
}else{
return selectMinK(arr, low, index - 1, k);
}
} public static int pation(int [] arr, int low, int high){
while(low < high){
while(low < high && arr[low] <= arr[high]){
high--;
}
if(low < high){
int tmp = arr[low];
arr[low] = arr[high];
arr[high] = tmp;
low++;
}
while(low < high && arr[low] <= arr[high]){
low++;
}
if(low < high){
int tmp = arr[low];
arr[low] = arr[high];
arr[high] = tmp;
high--;
}
}
return low;
}
}

五、执行结果

第4小元素为:6

减治算法之寻找第K小元素问题的更多相关文章

  1. 寻找第K小元素

    要在一个序列里找出第K小元素,可以用排序算法,然后再找.可以证明,排序算法的上界为O(nlogn). 在这里,给出两种可以在线性时间内找出第K小元素的方法. 方法1: (1) 选定一个比较小的阈值(如 ...

  2. 算法导论 寻找第i小元素 9.2

    PS1:如果单纯为做出这道题那么这个代价是O(nlgn),通过排序就可以了. 这里讨论的是O(n)的算法.那么来分析一下这个算法是如何做到O(n)的,算了不分析了,这个推到看起来太麻烦了.其实我想知道 ...

  3. 快速选择算法/Select 寻找第k大的数

    参考算法导论9.3节的内容和这位大神的博客:http://blog.csdn.net/v_JULY_v上对这一节内容代码的实现进行了学习 尝试实现了以查找中位数为前提的select算法. 算法功能:可 ...

  4. 快速排序以及第k小元素的线性选择算法

    简要介绍下快速排序的思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此 ...

  5. 算法导论学习之线性时间求第k小元素+堆思想求前k大元素

    对于曾经,假设要我求第k小元素.或者是求前k大元素,我可能会将元素先排序,然后就直接求出来了,可是如今有了更好的思路. 一.线性时间内求第k小元素 这个算法又是一个基于分治思想的算法. 其详细的分治思 ...

  6. (寻找第K小的数&amp;&amp;寻找第K小的数的和)

    这一篇博客以一些OJ上的题目为载体,讲一下寻找第K小的数的方法 方法一: 先将数据排列好,然后,然后return a[k]或者将前K个数加起来 方法二: 基于高速排序.如,一次高速排序将某一个数放到了 ...

  7. 中位数与第K小元素

    算法实际上是模仿快速排序算法设计出来的,其基本思想也是对输入数组进行递归划分,与快速排序不同的是,它只对划分出来的子数组之一进行递归处理: int randompartition(int a[],in ...

  8. 清橙OJ 1082 查找第K小元素 -- 快速排序

    题目地址:http://oj.tsinsen.com/A1082 问题描述 给定一个大小为n的数组s和一个整数K,请找出数组中的第K小元素. 这是一个补充程序的试题,你需要完成一个函数: int fi ...

  9. 查询无序列表中第K小元素

    当需要在无需列表中寻找第k小的元素时,一个显然的方法是将所有数据进行排序,然后检索k个元素.这种方法的运行时间为O(n log(n)). 无序列表调用分区函数将自身分解成两个子表,其长度为i和n-i. ...

随机推荐

  1. python读取excel学习(1)

    #coding=gbk #coding=utf-8 import xlrd table = xlrd.open_workbook(r'E:\test.xlsx') #sheet = table.she ...

  2. Linux基础测试

    目 录 第1章 文件及目录课后作业    1 第2章 Linux打包与压缩习题    1 第3章 Linux系统VIM编辑器习题    1   文件及目录课后作业 从/proc/meminfo中过滤出 ...

  3. 【BZOJ 3555】 [Ctsc2014]企鹅QQ(哈希)

    Description PenguinQQ是中国最大.最具影响力的SNS(Social Networking Services)网站,以实名制为基础,为用户提供日志.群.即时通讯.相册.集市等丰富强大 ...

  4. STL中set求交集、并集、差集的方法

    并集(http://zh.cppreference.com/w/cpp/algorithm/set_union) 交集(http://zh.cppreference.com/w/cpp/algorit ...

  5. Haybale Stacking(差分数组 + 求中位数的一些方法 + nth_element)

    题意: 给定N个初始值为0的数, 然后给定K个区间修改(区间[l,r] 每个元素加一), 求修改后序列的中位数. 分析: K个离线的区间修改可以使用差分数组(http://www.cnblogs.co ...

  6. Druid连接池简单配置

    Druid是阿里巴巴开源平台上的一个项目,整个项目由数据库连接池.插件框架和SQL解析器组成.该项目主要是为了扩展JDBC的一些限制,可以让程序员实现一些特殊的需求,比如向密钥服务请求凭证.统计SQL ...

  7. 【转】windows下nginx+mono+fastCGI部署asp.net网站

    原文链接:http://www.cnblogs.com/amityat/archive/2011/08/23/2150153.html 1,什么是nginx 简介Nginx ("engine ...

  8. 624. Maximum Distance in Arrays

    Problem statement Given m arrays, and each array is sorted in ascending order. Now you can pick up t ...

  9. private、protected和public的区别

    private 是完全私有的,只有当前类中的成员能访问到. protected 是受保护的,只有当前类的成员与继承该类的类才能访问. 这两个是访问类中成员权限的限制符.在类外如果想使用类中的成员,只能 ...

  10. react.js 高阶组件----很简单的实例理解高阶组件思想

    调试代码之前,我设置了两个缓存 分别是username和content 在控制台console设置两个缓存代码 localStorage.setItem('username','老王')localSt ...