Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身。

《Hadoop基础教程》是我读的第一本Hadoop书籍,当然在线只能试读第一章,不过对Hadoop历史、核心技术和应用场景有了初步了解。

  • Hadoop历史

雏形开始于2002年的Apache的Nutch,Nutch是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具。包括全文搜索和Web爬虫。

随后在2003年Google发表了一篇技术学术论文谷歌文件系统(GFS)。GFS也就是google File System,google公司为了存储海量搜索数据而设计的专用文件系统。

2004年Nutch创始人Doug Cutting基于Google的GFS论文实现了分布式文件存储系统名为NDFS。

2004年Google又发表了一篇技术学术论文MapReduce。MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行分析运算。

2005年Doug Cutting又基于MapReduce,在Nutch搜索引擎实现了该功能。

2006年,Yahoo雇用了Doug Cutting,Doug Cutting将NDFS和MapReduce升级命名为Hadoop,Yahoo开建了一个独立的团队给Goug Cutting专门研究发展Hadoop。

不得不说Google和Yahoo对Hadoop的贡献功不可没。

  • Hadoop核心

Hadoop的核心就是HDFS和MapReduce,而两者只是理论基础,不是具体可使用的高级应用,Hadoop旗下有很多经典子项目,比如HBase、Hive等,这些都是基于HDFS和MapReduce发展出来的。要想了解Hadoop,就必须知道HDFS和MapReduce是什么。

  • HDFS

HDFS(Hadoop Distributed File System,Hadoop分布式文件系统),它是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,适合那些有着超大数据集(large data set)的应用程序。

HDFS的设计特点是:

1、大数据文件,非常适合上T级别的大文件或者一堆大数据文件的存储,如果文件只有几个G甚至更小就没啥意思了。

2、文件分块存储,HDFS会将一个完整的大文件平均分块存储到不同计算器上,它的意义在于读取文件时可以同时从多个主机取不同区块的文件,多主机读取比单主机读取效率要高得多得都。

3、流式数据访问,一次写入多次读写,这种模式跟传统文件不同,它不支持动态改变文件内容,而是要求让文件一次写入就不做变化,要变化也只能在文件末添加内容。

4、廉价硬件,HDFS可以应用在普通PC机上,这种机制能够让给一些公司用几十台廉价的计算机就可以撑起一个大数据集群。

5、硬件故障,HDFS认为所有计算机都可能会出问题,为了防止某个主机失效读取不到该主机的块文件,它将同一个文件块副本分配到其它某几个主机上,如果其中一台主机失效,可以迅速找另一块副本取文件。

HDFS的关键元素:

Block:将一个文件进行分块,通常是64M。

NameNode:保存整个文件系统的目录信息、文件信息及分块信息,这是由唯一一台主机专门保存,当然这台主机如果出错,NameNode就失效了。在Hadoop2.*开始支持activity-standy模式----如果主NameNode失效,启动备用主机运行NameNode。

DataNode:分布在廉价的计算机上,用于存储Block块文件。

  • MapReduce

通俗说MapReduce是一套从海量·源数据提取分析元素最后返回结果集的编程模型,将文件分布式存储到硬盘是第一步,而从海量数据中提取分析我们需要的内容就是MapReduce做的事了。

下面以一个计算海量数据最大值为例:一个银行有上亿储户,银行希望找到存储金额最高的金额是多少,按照传统的计算方式,我们会这样:

  1. Long moneys[] ...
  2. Long max = 0L;
  3. for(int i=0;i<moneys.length;i++){
  4. if(moneys[i]>max){
  5. max = moneys[i];
  6. }
  7. }

如果计算的数组长度少的话,这样实现是不会有问题的,还是面对海量数据的时候就会有问题。

MapReduce会这样做:首先数字是分布存储在不同块中的,以某几个块为一个Map,计算出Map中最大的值,然后将每个Map中的最大值做Reduce操作,Reduce再取最大值给用户。


 
     
MapReduce的基本原理就是:将大的数据分析分成小块逐个分析,最后再将提取出来的数据汇总分析,最终获得我们想要的内容。当然怎么分块分析,怎么做Reduce操作非常复杂,Hadoop已经提供了数据分析的实现,我们只需要编写简单的需求命令即可达成我们想要的数据。

  • 总结

总的来说Hadoop适合应用于大数据存储和大数据分析的应用,适合于服务器几千台到几万台的集群运行,支持PB级的存储容量。

Hadoop典型应用有:搜索、日志处理、推荐系统、数据分析、视频图像分析、数据保存等。

但要知道,Hadoop的使用范围远小于SQL或Python之类的脚本语言,所以不要盲目使用Hadoop,看完这篇试读文章,我知道Hadoop不适用于我们的项目。不过Hadoop作为大数据的热门词,我觉得一个狂热的编程爱好者值得去学习了解,或许你下一个归宿就需要Hadoop人才,不是吗。

转载自:http://blessht.iteye.com/blog/2095675

hadoop是什么的更多相关文章

  1. Hadoop 中利用 mapreduce 读写 mysql 数据

    Hadoop 中利用 mapreduce 读写 mysql 数据   有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP ...

  2. 初识Hadoop、Hive

    2016.10.13 20:28 很久没有写随笔了,自打小宝出生后就没有写过新的文章.数次来到博客园,想开始新的学习历程,总是被各种琐事中断.一方面确实是最近的项目工作比较忙,各个集群频繁地上线加多版 ...

  3. hadoop 2.7.3本地环境运行官方wordcount-基于HDFS

    接上篇<hadoop 2.7.3本地环境运行官方wordcount>.继续在本地模式下测试,本次使用hdfs. 2 本地模式使用fs计数wodcount 上面是直接使用的是linux的文件 ...

  4. hadoop 2.7.3本地环境运行官方wordcount

    hadoop 2.7.3本地环境运行官方wordcount 基本环境: 系统:win7 虚机环境:virtualBox 虚机:centos 7 hadoop版本:2.7.3 本次先以独立模式(本地模式 ...

  5. 【Big Data】HADOOP集群的配置(一)

    Hadoop集群的配置(一) 摘要: hadoop集群配置系列文档,是笔者在实验室真机环境实验后整理而得.以便随后工作所需,做以知识整理,另则与博客园朋友分享实验成果,因为笔者在学习初期,也遇到不少问 ...

  6. Hadoop学习之旅二:HDFS

    本文基于Hadoop1.X 概述 分布式文件系统主要用来解决如下几个问题: 读写大文件 加速运算 对于某些体积巨大的文件,比如其大小超过了计算机文件系统所能存放的最大限制或者是其大小甚至超过了计算机整 ...

  7. 程序员必须要知道的Hadoop的一些事实

    程序员必须要知道的Hadoop的一些事实.现如今,Apache Hadoop已经无人不知无人不晓.当年雅虎搜索工程师Doug Cutting开发出这个用以创建分布式计算机环境的开源软...... 1: ...

  8. Hadoop 2.x 生态系统及技术架构图

    一.负责收集数据的工具:Sqoop(关系型数据导入Hadoop)Flume(日志数据导入Hadoop,支持数据源广泛)Kafka(支持数据源有限,但吞吐大) 二.负责存储数据的工具:HBaseMong ...

  9. Hadoop的安装与设置(1)

    在Ubuntu下安装与设置Hadoop的主要过程. 1. 创建Hadoop用户 创建一个用户,用户名为hadoop,在home下创建该用户的主目录,就不详细介绍了. 2. 安装Java环境 下载Lin ...

  10. 基于Ubuntu Hadoop的群集搭建Hive

    Hive是Hadoop生态中的一个重要组成部分,主要用于数据仓库.前面的文章中我们已经搭建好了Hadoop的群集,下面我们在这个群集上再搭建Hive的群集. 1.安装MySQL 1.1安装MySQL ...

随机推荐

  1. python2.x与3.x差别

    数字常量: 八进制 十六进制 二进制 2:0177 0o177   0x9ff 0b101010 3:0o177 0x9ff 0b101010 多种字符串: 2:一般字符串,Unicode字符串 3: ...

  2. Struts2 OGNL 字符串自定义转化对象细节

    要使用Struts2的自定义对象转化,需要几个要点: 1.要有继承DefaultTypeConverter的实现类,要重写convertValue,并且参数value转化而来的String是Strin ...

  3. nginx 不带www到www域名的重定向

    如果是单次重定向用 redirect, 如果永久跳转用 permanent,这里用 permanent { listen       80; server_name  xxx.com www.xxx. ...

  4. Linux常用命令[转]

    在博客的草稿箱里一直有一份"Linux命令"的草稿,记录了一些常用的Linux命令,用于需要的时候查询.由于是出于个人使用的目的,所以这个清单并不完整.今天整理了一下这个清单,调整 ...

  5. iOS移动硬盘实现原理

    iOS移动硬盘,仅仅是一个概念的包装,原理是在用户目录下创建一个特定的目录,应用层做一个界面直接访问这个目录而已. 大概流程是: 监听获得device句柄. AMDeviceConnect连接设备,并 ...

  6. iOS UITableViewCell的"滑动出现多个按钮"

    本文授权转载,作者:@夏天是个大人了 前言: 本篇博客其实就是想介绍tableviewcell滑动的一些"事",昨天在逛github的时候看到的还挺有意思的三方库,简单用了一下感觉 ...

  7. Android NDK常见配置问题的解决方案

    添加NDK包时出现"Not a valid NDK directory" 在解压的android-ndk-rxxx文件夹中新建一个txt文件,将名字包括后缀更改为ndk-build ...

  8. HTML中head里的内容经浏览器解析后全到body里了

    HTML中head里的内容经浏览器解析后全到body里了 修改完代码后,用chrome审查元素,head里的内容都到body中去了 http://bbs.csdn.net/topics/3802586 ...

  9. Python模拟删除字符串两边的空白

    目标: 1.使用string模块的whitespace 2.删除左边.右边以及两边的空白 代码如下: [root@localhost python]# cat rmspace.py #!/usr/bi ...

  10. Android 基于Android的手机邮件收发(JavaMail)之一(准备工作)

    界面一共是五个界面,分别是welcomeActivity,ReceiveAndSendActivity,ReceiveListActivity,SendMailActivity,MailDetails ...