八、(本题10分)  设 $V$ 为数域 $K$ 上的 $n$ 维线性空间, $\varphi$ 为 $V$ 上的线性变换. 子空间 $C(\varphi,\alpha)=L(\alpha,\varphi(\alpha),\varphi^2(\alpha),\cdots)$ 称为 $\varphi$ 关于 $V$ 中向量 $\alpha$ 的循环子空间. 若非零多项式 $f(x)\in K[x]$ 满足 $f(\varphi)(\alpha)=0$, 则称 $f(x)$ 是 $\varphi$ 在 $\alpha$ 处的零化多项式.

(1) 证明: 对 $V$ 中任一非零向量 $\alpha$, 必存在 $\varphi$ 在向量 $\alpha$ 处的零化多项式.

(2) 设 $V=C(\varphi,\alpha_1)\bigoplus C(\varphi,\alpha_2)\bigoplus\cdots\bigoplus C(\varphi,\alpha_m)$, 其中 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 是 $V$ 中的非零向量, $f_i(x)$ 是 $\varphi$ 在 $\alpha_i$ 处的零化多项式. 证明: 若 $f_1(x),f_2(x),\cdots,f_m(x)$ 是 $K$ 上互异的首一不可约多项式, 则 $\varphi$ 的任一不变子空间必为 $\bigoplus\limits_{i\in I}C(\varphi,\alpha_i)$ 的形式, 其中 $I$ 是 $\{1,2,\cdots,m\}$ 的子集 (注: $I$ 为空集时对应于零子空间).

分析  本题是新白皮书第 202 页例 4.47 的推广, 例 4.47 是零化多项式都是一次多项式的情形, 显然它的证明完全不能延拓到本题, 我们必须寻找新的方法. 本题的技巧就是互素多项式的应用 (参考白皮书第 256 页的 5.2.9 节) 以及中国剩余定理 (它的证明也是互素多项式的应用, 也可以直接用互素多项式的讨论替代它). 下面我们给出第二问的两种证明, 虽然它们本质上是一样的, 但考虑问题的出发点还是不同的.

证明  (1) 由于 $\dim V=n$, 故 $\alpha,\varphi(\alpha),\cdots,\varphi^{n-1}(\alpha),\varphi^n(\alpha)$ 必线性相关, 即存在不全为零的数 $c_0,c_1,\cdots,c_{n-1},c_n$, 使得 $$c_0\alpha+c_1\varphi(\alpha)+\cdots+c_{n-1}\varphi^{n-1}(\alpha)+c_n\varphi^n(\alpha)=0.$$ 令 $f(x)=c_0+c_1x+\cdots+c_{n-1}x^{n-1}+c_nx^n$, 则 $f(x)\neq 0$ 且 $f(\varphi)(\alpha)=0$.

(2) 证法一  任取 $V$ 的一个非零 $\varphi$-不变子空间 $U$, 定义 $$I=\{i\in [1,m]\mid \exists\,\beta\in U,\,\,\beta=\beta_1+\cdots+\beta_i+\cdots+\beta_m,\,\,\beta_j\in C(\varphi,\alpha_j),\,\,\beta_i\neq 0\}.$$ 显然, $I\neq\emptyset$ 并且 $U\subseteq \bigoplus\limits_{i\in I}C(\varphi,\alpha_i)$. 下面证明对任一 $i\in I$, $C(\varphi,\alpha_i)\subseteq U$ 成立, 从而结论成立. 不妨取 $\beta\in U$, $\beta=\beta_1+\beta_2+\cdots+\beta_m$, 其中 $\beta_i\in C(\varphi,\alpha_i)$ 且 $\beta_1\neq 0$, 我们只要证明 $C(\varphi,\alpha_1)\subseteq U$ 即可. 设 $\beta_i=g_i(\varphi)(\alpha_i)$, 其中 $g_i(x)\in K[x]\,(1\leq i\leq m)$. 因为 $\beta_1\neq 0$, 故 $f_1(x)\nmid g_1(x)$, 又 $f_1(x)$ 是不可约多项式, 从而只能是 $(f_1(x),g_1(x))=1$, 于是存在 $u(x),v(x)\in K[x]$, 使得 $f_1(x)u(x)+g_1(x)v(x)=1$. 代入 $x=\varphi$ 可得 $$f_1(\varphi)u(\varphi)+g_1(\varphi)v(\varphi)=I_V,$$ 上式两边同时作用 $\alpha_1$ 可得 $$\alpha_1=u(\varphi)f_1(\varphi)(\alpha_1)+v(\varphi)g_1(\varphi)(\alpha_1)=v(\varphi)(\beta_1).$$ 因为 $f_1(x),f_2(x),\cdots,f_m(x)$ 两两互素, 由中国剩余定理可知, 存在 $h(x)\in K[x]$, 使得 $$h(x)\equiv v(x) \pmod{f_1(x)},\,\,\,\,h(x)\equiv 0 \pmod{f_j(x)},\,\,j=2,\cdots,m,$$ 从而 $$h(\varphi)(\beta)=h(\varphi)(\beta_1)+h(\varphi)(\beta_2)+\cdots+h(\varphi)(\beta_m)=v(\varphi)(\beta_1)=\alpha_1\in U.$$ 因为 $C(\varphi,\alpha_1)$ 是由 $\alpha_1$ 生成的 $\varphi$-不变的循环子空间, 故有 $C(\varphi,\alpha_1)\subseteq U$.

证法二  设 $p_i:V\to C(\varphi,\alpha_i)$ 是从 $V$ 到其直和因子 $C(\varphi,\alpha_i)$ 上的投影映射, 任取 $V$ 的一个非零 $\varphi$-不变子空间 $U$, 定义 $U_i=p_i(U)$, 则容易验证 $U_i$ 是 $C(\varphi,\alpha_i)$ 的子空间. 显然我们有 $$U\subseteq U_1+U_2+\cdots+U_m=U_1\oplus U_2\oplus\cdots\oplus U_m.$$ 首先, 我们来证明上述包含关系是相等关系, 为此不失一般性, 我们只要证明 $U_1\subseteq U$ 即可. 任取 $\beta_1\in U_1$, 并设它是 $\beta\in U$ 的投影, 即有 $\beta=\beta_1+\beta_2+\cdots+\beta_m$, 其中 $\beta_i\in U_i$. 因为 $f_1(x)$ 与 $f_2(x)\cdots f_m(x)$ 互素, 故存在 $u(x),v(x)\in K[x]$, 使得 $f_1(x)u(x)+f_2(x)\cdots f_m(x)v(x)=1$. 代入 $x=\varphi$ 可得 $$f_1(\varphi)u(\varphi)+f_2(\varphi)\cdots f_m(\varphi)v(\varphi)=I_V,$$ 上式两边同时作用 $\beta_1$ 可得 $$\beta_1=u(\varphi)f_1(\varphi)(\beta_1)+v(\varphi)f_2(\varphi)\cdots f_m(\varphi)\big(\beta-(\beta_2+\cdots+\beta_m)\big)$$$$=v(\varphi)f_2(\varphi)\cdots f_m(\varphi)(\beta)\in U,$$ 从而 $U_1\subseteq U$ 成立, 因此 $$U=U_1\oplus U_2\oplus\cdots\oplus U_m.$$ 其次, 注意到 $$\varphi(\beta)=\varphi(\beta_1)+\varphi(\beta_2)+\cdots+\varphi(\beta_m),\,\,\,\,\beta\in U,\,\,\beta_i\in U_i\subseteq C(\varphi,\alpha_i),$$ 由于 $C(\varphi,\alpha_i)$ 是 $\varphi$-不变的, 故 $\varphi(\beta_i)\in C(\varphi,\alpha_i)$ 也是 $\varphi(\beta)\in U$ 在 $C(\varphi,\alpha_i)$ 上的投影, 于是 $\varphi(\beta_i)\in U_i$, 这说明 $U_i$ 是 $C(\varphi,\alpha_i)$ 的 $\varphi$-不变子空间. 最后, 为了证明本题结论, 我们只要证明 $C(\varphi,\alpha_i)$ 只有平凡的 $\varphi$-不变子空间即可. 不妨设 $U_1$ 是 $C(\varphi,\alpha_1)$ 的非零 $\varphi$-不变子空间, 任取 $0\neq\beta_1\in U_1$, 并设 $\beta_1=g_1(\varphi)(\alpha_1)$, 其中 $g_1(x)\in K[x]$. 因为 $\beta_1\neq 0$, 故 $f_1(x)\nmid g_1(x)$, 又 $f_1(x)$ 是不可约多项式, 从而只能是 $(f_1(x),g_1(x))=1$, 于是存在 $w(x),t(x)\in K[x]$, 使得 $f_1(x)w(x)+g_1(x)t(x)=1$. 代入 $x=\varphi$ 可得 $$f_1(\varphi)w(\varphi)+g_1(\varphi)t(\varphi)=I_V,$$ 上式两边同时作用 $\alpha_1$ 可得 $$\alpha_1=w(\varphi)f_1(\varphi)(\alpha_1)+t(\varphi)g_1(\varphi)(\alpha_1)=t(\varphi)(\beta_1)\in U_1.$$ 因为 $C(\varphi,\alpha_1)$ 是由 $\alpha_1$ 生成的 $\varphi$-不变的循环子空间, 故 $U_1=C(\varphi,\alpha_1)$ 成立, 结论得证.  $\Box$

  本题15级只有谢灵尧同学和王昊越同学完全做出.

复旦大学2015--2016学年第一学期(15级)高等代数I期末考试第八大题解答的更多相关文章

  1. 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答

    八.(本题10分)  设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析  证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...

  2. 复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第六大题解答

    六.(本题10分)  设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))= ...

  3. 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第六大题解答

    六.(本题10分)  设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)= ...

  4. 复旦大学2018--2019学年第一学期(18级)高等代数I期末考试第七大题解答

    七.(本题10分)  设 $V$ 为 $n$ 维线性空间, $\varphi,\psi$ 是 $V$ 上的线性变换, 满足 $\varphi\psi=\varphi$. 证明: $\mathrm{Ke ...

  5. 复旦大学2013--2014学年第一学期(13级)高等代数I期末考试第七大题解答

    七.(本题10分)设 \(A\) 为数域 \(K\) 上的 \(n\) 阶非异阵, 证明: 对任意的对角阵 \(B\in M_n(K)\),  \(A^{-1}BA\) 均为对角阵的充分必要条件是 \ ...

  6. 复旦大学2014--2015学年第一学期(14级)高等代数I期末考试第七大题解答

    七.(本题10分)  设 \(V\) 为数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(S=\{v_1,v_2,\cdots,v_m\}\) 为 \(V\) 中的向量组, 定义 ...

  7. 复旦大学2016--2017学年第一学期(16级)高等代数I期末考试第七大题解答

    七.(本题10分)  设 $A,B$ 均为 $m\times n$ 阶实矩阵, 满足 $A'B+B'A=0$. 证明: $$r(A+B)\geq\max\{r(A),r(B)\},$$并且等号成立的充 ...

  8. 复旦大学2017--2018学年第一学期(17级)高等代数I期末考试第六大题解答

    六.(本题10分)  设 $M_n(K)$ 为数域 $K$ 上的 $n$ 阶方阵全体构成的线性空间, $A,B\in M_n(K)$, $M_n(K)$ 上的线性变换 $\varphi$ 定义为 $\ ...

  9. 复旦大学2017--2018学年第二学期(17级)高等代数II期末考试第六大题解答

    六.(本题10分)   设 $A$ 为 $n$ 阶幂零阵 (即存在正整数 $k$, 使得 $A^k=0$), 证明: $e^A$ 与 $I_n+A$ 相似. 证明  由 $A$ 是幂零阵可知, $A$ ...

随机推荐

  1. hadoop(2014/0619)

    map-reduce :分解任务和合并任务的能力 hdfs: namenode and datanode namenode放置元数据 datanoe放置数据

  2. docker在centos7下的一些坑

    在centos的docker上安装mysql提示chown mod /var/lib/mysql permission denied,通过下面的方法1解决. 在centos上挂载数据卷,在容器内部访问 ...

  3. win7下开启telnet命令

    win7下开启telnet命令 win7上telnet这条命令默认被关闭了. 开启telnet方法如下: 一,打开控制面版 二,选择程序 三,选择打开或关闭windows功能 在弹出窗口中把 Teln ...

  4. [SharePoint 2007/2010]Query SharePoint Calendar Event

    首先要搞清楚日历事件的各种类型,参考文章: http://sharepoint.microsoft.com/blog/Pages/BlogPost.aspx?PageType=4&ListId ...

  5. python 类型大小

    返回单位:字节 sys.getsizeof() import sys>>> sys.getsizeof(') >>> sys.getsizeof(') >&g ...

  6. 在线免费生成 <IDEA>全系列 注册码

    body { background: #fff; color: #333; font-family: Consolas, sans-serif; margin: 2em auto; width: 70 ...

  7. 3-PHP全部编码UTF-8

    0-html <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> ...

  8. Windows XP 新增API函数列表

    SetFileShortNameConvertFiberTothreadCreateFiberExDuplicateEncryptionInfoFileEnumGeoInfoProcEnumSyste ...

  9. VIM 常用快捷键

    一,光标移动 大家不要觉得光标移动不重要,其实它是基础,更好的光标移动,复制,粘贴,删除等才能更加的得心应手,进入了编辑器里面后,鼠标就不能用了. 光标移动 h 或 向左箭头键(←) 20h或者20( ...

  10. 《zw版·Halcon-delphi系列原创教程》 Halcon分类函数017·point点函数

    <zw版·Halcon-delphi系列原创教程> Halcon分类函数017·point点函数 为方便阅读,在不影响说明的前提下,笔者对函数进行了简化: :: 用符号“**”,替换:“p ...