[专题论文阅读]【分布式DNN训练系统】 FireCaffe
FireCaffe
Forrest N. Iandola FireCaffe: near-linear acceleration of deep neural network training on computer clusters 2016.1
Problem statements from data scientists
4 key pain points summarized by Jeff Dean from Google:
1. DNN researchers and users want results of experiments quickly.
2. There is a “patience threshold”: No one wants to wait more than a few days or a week for result.
3. This significantly affects scale of problems that can be tackled.
4. We sometimes optimize for experiment turnaround time, rather than absolute minimal system resources for performing the experiments
Problem analysis
The speed and scalability of distributed algorithm are almost always limited by the overhead of communicating between servers; DNN training is not an exception to this rule.
So the design focuses on the communication enhancement, including:
1. Upgrade to high throughput interconnects, i.e. use high throughput interconnections like IB etc.
2. Decrease the data transmission volume while training, which includes:
a) Balance carefully between data parallelism and model parallelism
b) Increase batch size to reduce communication quantity. And identify hyperparameters suitable for large batch size.
c) Communication data quantity balance among nodes to avoid single point dependency.
Key take-aways
Parallelism Scheme: Model parallelism or Data Parallelism
Model parallelism
Each worker gets a subset of the model parameters, and the workers communication by exchanging data gradients and exchanging activations . and data quantity is:
Data parallelism
Each worker gets a subset of the batch, and then the workers communicate by exchanging weight gradient updates , where and data quantity is:
Convolution layer and fully connection layer have different characteristics in data/weight ratio. So they can use different parallelism schemes.
So a basic conclusion is: convolution layers can be fitted into data parallelism, and fc layers can be fitted into model parallelism.
Further more, for more advanced CNNs like GoogLeNet and ResNet etc., we can directly use data parallelism, as this paper is using.
Gradient Aggregation Scheme: Parameter Server or Reduction Tree
One picture to show how parameter server and reduction tree work in data parallelism.
Parameter Server
Parameter communication time with regard to worker number in parameter server scheme.
The communication time scales linearly as we increase the number of workers. single parameter server becomes scalability bottleneck.
Microsoft Adam and Google DistBelief relief this issue by defining a poll of nodes taht colelctively behave as a parameter server. The bigger the parameter server hierarchy gets, the more it looks like a reduction tree.
Reduction Tree
The idea is same as allreduce in message passing model. Parameter communication time with regard to worker number in reduction tree scheme.
It scales logrithmatically as the number of workers.
Batch size selection
Larger batch size lead to less frequent communication and therefore enable more scalability in a distributed setting. But for larger batch size, we need identify a suitable hyperparameter setting to maintain the speed and accuracy produced in DNN training.
Hyperparameters includes:
1. Initial learning rate
2. learning rate update scheme
3. weight delay
4. momentum
Weight update rule used, here means iteration index:
Learning rate update rule:
On how to get hyperparameters according to batch size, I will write another article for this.
Results
Final results on GPU cluster w/ GoogleNet.
More thinking
1. 以上方案基本上是无损的,为了更进一步减少通信开销,大家开始尝试有损的方案,在训练速度和准确度之间进行折衷。典型的有:
1). Reduce parameter size using 16-bit floating-point - Google
2). Use 16-bit weights and 8-bit activations.
3). 1-bit gradients backpropagation - Microsoft
4). Discard gradients whose numerical values fall below a certain threshold - Amazon
5). Compress(e.g. using PCA) weights before transmitting
6). Network pruning/encoding/quantization - Intel, DeePhi
2. 使用新的底层技术来减少通信开销 - Matrix
1) RDMA rather than traditional TCP/IP?
[专题论文阅读]【分布式DNN训练系统】 FireCaffe的更多相关文章
- 暑假第二弹:基于docker的hadoop分布式集群系统的搭建和测试
早在四月份的时候,就已经开了这篇文章.当时是参加数据挖掘的比赛,在计科院大佬的建议下用TensorFlow搞深度学习,而且要在自己的hadoop分布式集群系统下搞. 当时可把我们牛逼坏了,在没有基础的 ...
- 分布式链路追踪系统Sleuth和ZipKin
1.微服务下的链路追踪讲解和重要性 简介:讲解什么是分布式链路追踪系统,及使用好处 进行日志埋点,各微服务追踪. 2.SpringCloud的链路追踪组件Sleuth 1.官方文档 http://cl ...
- 基于zipkin分布式链路追踪系统预研第一篇
本文为博主原创文章,未经博主允许不得转载. 分布式服务追踪系统起源于Google的论文“Dapper, a Large-Scale Distributed Systems Tracing Infras ...
- 高性能分布式内存队列系统beanstalkd(转)
beanstalkd一个高性能.轻量级的分布式内存队列系统,最初设计的目的是想通过后台异步执行耗时的任务来降低高容量Web应用系统的页面访问延迟,支持过有9.5 million用户的Facebook ...
- 转: 透过CAT,来看分布式实时监控系统的设计与实现
评注: 开源的分布式监控系统 转:http://www.infoq.com/cn/articles/distributed-real-time-monitoring-and-control-syste ...
- Cola:一个分布式爬虫框架 - 系统架构 - Python4cn(news, jobs)
Cola:一个分布式爬虫框架 - 系统架构 - Python4cn(news, jobs) Cola:一个分布式爬虫框架 发布时间:2013-06-17 14:58:27, 关注:+2034, 赞美: ...
- zipkin分布式链路追踪系统
基于zipkin分布式链路追踪系统预研第一篇 分布式服务追踪系统起源于Google的论文“Dapper, a Large-Scale Distributed Systems Tracing Inf ...
- 分布式日志收集系统Apache Flume的设计详细介绍
问题导读: 1.Flume传输的数据的基本单位是是什么? 2.Event是什么,流向是怎么样的? 3.Source:完成对日志数据的收集,分成什么打入Channel中? 4.Channel的作用是什么 ...
- Apache shiro集群实现 (七)分布式集群系统下---cache共享
Apache shiro集群实现 (一) shiro入门介绍 Apache shiro集群实现 (二) shiro 的INI配置 Apache shiro集群实现 (三)shiro身份认证(Shiro ...
随机推荐
- Install CodeBlocks in CentOS 7
- For now, CodeBlocks doesn't privide binary packages for CentOS7.(http://www.codeblocks.org/downloa ...
- dicom转换软件的一点头绪
想用c#写一个由dicom格式转化为jpeg或者其他格式的文件 找到了这个类 fo-dicom类
- Spring Mvc Rest为不支持DELETE/PUT的浏览器添加DELETE/PUT支持
现在都流行RESTFul,但是有一个问题,有些浏览器现在就不支持delete/put方式的请求,这些请求发出去之后都会变成get请求,导致rest接口无法被访问到.为了解决这个问题,spring提出了 ...
- Laravel 使用多个数据库的问题。
这几天在使用Laravel 开发一个系统.这个系统连2个数据库.一个名为blog,一个名为center. center 数据库的作用是作为用户中心.可能会有其他几个系统相连,属于公用数据库.主要是用来 ...
- C#如何获取CPU处理器核心数量 z
有几条不同的处理器信息,您可以获得有关的信息:物理处理器数量.核心数量和逻辑处理器数量,这些可以不同.两颗双核超线程(启用)处理器的机器情况下有:2个物理处理器.4个核心和8个逻辑处理器. 逻辑处理器 ...
- Flask 的 Context 机制
转自https://blog.tonyseek.com/post/the-context-mechanism-of-flask/ Flask 的 Context 机制 2014 年 07 月 21 日 ...
- 4、IMS
链:1:http://www.cnblogs.com/gnuhpc/archive/2012/12/11/2813494.html [笔记] 1.<计算机网络(第五版)>P10-15:电路 ...
- Linux系统下如何查看已经登录用户
查看用户的操作 系统管理员若想知道某一时刻用户的行为,只需要输入命令W 即可,在SHELL终端中输入如下命令: [ROOT@LOCALHOST ROOT] # W 2:31PM UP 11 DAY , ...
- git 源代码下载和安装(CentOS)
1.阅读INSTALL文件 $ make configure ;# as yourself$ ./configure --prefix=/usr ;# as yourself$ make all do ...
- oracle 查询执行过的SQL语句
SELECT * FROM v$sqlarea t WHERE t.FIRST_LOAD_TIME between '2016-12-23/16:03:00' and '2016-12-23/16:0 ...