[luogu]P1463

[SDOI2005]反素数ant

——!x^n+y^n=z^n

题目描述

对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。

如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。

现在给定一个数N,你能求出不超过N的最大的反质数么?

输入输出格式

输入格式:

一个数N(1<=N<=2,000,000,000)。

输出格式:

不超过N的最大的反质数。

输入输出样例

输入样例1#:

1000

输出样例1#:

840


算术基本定理,质因数分解:

N=a1^k1*a2^k2*L*an^kn,约数个数:(k1+1)*(k2+1)*L*(kn+1)。

一开始以为贪心就行了,尽量多乘素数,后面发现...休想哦。40就过不了,唉,不过爆搜就可以过了呵呵...

记录当前的数st,当前搜到第几个素数(11个就很够了,再乘的话肯定存在前面某一种素数组合使其约数与当前相同,不过肯定是小的比较优啊),还有就是约数个数,约数相同的话要选择st小的,后面不叫反素数。

代码:

 //2017.10.30
 //dfs math
 #include<iostream>
 #include<cstdio>
 #include<cstring>
 using namespace std;
 typedef long long ll ;
 inline ll read();
 namespace lys{
     ]={,,,,,,,,,,,,,};
     ll ans=,n;
     int MAX;
     void dfs(ll st,int x,ll num){
         if(num>MAX||(num==MAX&&st<ans)){
             ans=st;
             MAX=num;
         }
         ;
         ll ;
         ) return ;
         while(base*st<=n){
             dfs(st*,1LL*(++i)*num);
             base*=pri[x];
         }
     }
     int main(){
         n=read();
         dfs(,,);
         printf("%lld\n",ans);
         ;
     }
 }
 int main(){
     lys::main();
     ;
 }
 inline ll read(){
     ll kk=,ff=;
     char c=getchar();
     '){
         ;
         c=getchar();
     }
     +c-',c=getchar();
     return kk*ff;
 }

[luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]的更多相关文章

  1. Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】

    题目链接:https://www.luogu.org/problemnew/show/P1463 题意: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x ...

  2. 洛谷 P1463 [SDOI2005]反素数ant

    P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...

  3. 洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  4. P1463 [SDOI2005]反素数ant

    题意: 题解: 思维难度不高,考虑到n较大,而反质数个数较少 所以只要算出每个反质数即可 考虑如何计算,可以发现,我们只需枚举计算出约数有x个的最小数,再做一下判断即可 另外约数的个数=(a1+1)( ...

  5. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  6. [BZOJ1053][SDOI2005]反素数ant 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1053 假设这个最大的反素数为$x$,那么$1<p<x$中数的因子数都没有$x$ ...

  7. [SDOI2005]反素数ant

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  8. 洛谷 1463[SDOI2005] 反素数ant

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  9. 【BZOJ】【1053】【HAOI2007】反素数ant

    搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...

随机推荐

  1. 测开之路一百零四:jquery操作样式

    jquery操作样式 添加样式.删除样式 切换样式 css("属性","值") css("属性","值"), 修改多个 ...

  2. C#7.0新特性和语法糖详解

    转自IT之家网--DotNet码农:https://www.ithome.com/html/win10/305148.htm 伴随Visual Studio 2017的发布,C#7.0开始正式走上工作 ...

  3. Spring Boot 之 springcache的使用

    一.开启 springcache,启动类添加 @EnableCaching 注解 @SpringBootApplication @EnableCaching public class Gatherin ...

  4. react-redux --》react中 最好用的状态管理方式

    一.Redux与组件 react-redux是一个第三方插件使我们在react上更方便的来使用redux这个数据架构 React-Redux提供connect方法,用于从UI组件生成容器组件,conn ...

  5. Linux下杀进程

    $ ps -ef | grep firefox smx : ? :: /usr/lib/firefox-/firefox-bin smx : pts/ :: grep --color=auto fir ...

  6. 第五周课程总结&实验报告

    一.已知字符串:"this is a test of java".按要求执行以下操作:(要求源代码.结果截图.) 统计该字符串中字母s出现的次数. 统计该字符串中子串"i ...

  7. JVM — 类加载机制

    1. 引言 java 类被虚拟机编译之后成为一个 Class 的字节码文件,该字节码文件中包含各种描述信息,最终都需要加载到虚拟机中之后才能运行和使用.那么虚拟机是如何加载这些 Class 文件?Cl ...

  8. jsp页面转换时间戳

    <%@taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%> <fmt:fo ...

  9. Spark 计算人员三度关系

    1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友 ...

  10. sqoop使用中文手册

    文章转载自:http://www.zihou.me/html/2014/01/28/9114.html 1.     概述 本文档主要对SQOOP的使用进行了说明,参考内容主要来自于Cloudera ...