分析

好像是有一个叫这个名字的算法,链接

令\(f[i][j][k]\)表示一辆每公里耗油量为\(1\)的货车从\(i\)到\(j\)中途加\(k\)次油最小的油箱容量。枚举所有的起点和中途加油的次数,这样就固定了两维,显然有DP方程:

\[f[i][j][k]= \min_{p=i}^{j} ( \max (f[i][p][k-1],a[j]-a[p]))
\]

根据生活经验题意显然这个DP具有决策单调性,可以用分治优化一下。

具体来说就是每次大力求出\(mid=(l+r)/2\)的决策点,然后分治就好了,显然分治左区间的决策点一定不在\(mid\)的决策点(这里一定要注意是\(mid\)的决策点而不是\(mid\))的右边,分治右区间的决策点一定不在\(mid\)的决策点的左边。

代码

#include <bits/stdc++.h>
#define rin(i,a,b) for(register int i=(a);i<=(b);++i)
#define irin(i,a,b) for(register int i=(a);i>=(b);--i)
#define trav(i,a) for(register int i=head[a];i;i=e[i].nxt)
typedef long long LL;
using std::cin;
using std::cout;
using std::endl; inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int MAXN=405;
int n,m,a[MAXN],f[MAXN][MAXN][MAXN]; void solve(int bg,int cnt,int l,int r,int ql,int qr){
if(l>r) return;
int mid=((l+r)>>1),opt=0,temp=0;
rin(i,ql,std::min(qr,mid))
if(!opt||std::max(a[mid]-a[i],f[bg][i][cnt-1])<temp)
temp=std::max(a[mid]-a[i],f[bg][i][cnt-1]),opt=i;
f[bg][mid][cnt]=temp;
solve(bg,cnt,l,mid-1,ql,opt);
solve(bg,cnt,mid+1,r,opt,qr);
} int main(){
n=read(),m=read();
rin(i,1,n) a[i]=read();
rin(i,1,n) rin(j,i,n) f[i][j][0]=a[j]-a[i];
rin(i,1,n) rin(j,1,n) solve(i,j,i+1,n,i+1,n);
LL ans=0;
rin(i,1,m){
int s=read(),t=read(),c=read(),r=read();
ans=std::max(ans,1ll*f[s][t][r]*c);
}
printf("%I64d\n",ans);
return 0;
}

[CF1101F]Trucks and Cities:分治优化决策单调性的更多相关文章

  1. bzoj 2739 最远点——分治处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2739 分治处理决策单调性的思想就是先找到一个询问,枚举所有可能的转移找到它的决策点,那么这个 ...

  2. [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性

    [HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...

  3. CF1101F Trucks and Cities

    题意:给定线段上n个特殊点,m次询问. 每次询问:在第l个点到第r个点这一段区间中选出k个点,将其分成k + 1段.使得最长的段尽量短. 输出这m个询问中答案最大的. n<=400,m<= ...

  4. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  5. [NOI2009]诗人小G 决策单调性优化DP

    第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...

  6. CF868F Yet Another Minimization Problem(决策单调性)

    题目描述:给定一个序列,要把它分成k个子序列.每个子序列的费用是其中相同元素的对数.求所有子序列的费用之和的最小值. 输入格式:第一行输入n(序列长度)和k(需分子序列段数).下一行有n个数,序列的每 ...

  7. 【洛谷3515】[POI2011] Lightning Conductor(决策单调性)

    点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt ...

  8. Codeforces 868F. Yet Another Minimization Problem【决策单调性优化DP】【分治】【莫队】

    LINK 题目大意 给你一个序列分成k段 每一段的代价是满足\((a_i=a_j)\)的无序数对\((i,j)\)的个数 求最小的代价 思路 首先有一个暴力dp的思路是\(dp_{i,k}=min(d ...

  9. bzoj4518: [Sdoi2016]征途(DP+决策单调性分治优化)

    题目要求... 化简得... 显然m和sum^2是已知的,那么只要让sigma(si^2)最小,那就变成了求最小平方和的最小值,经典的决策单调性,用分治优化即可. 斜率优化忘得差不多就不写了 #inc ...

随机推荐

  1. [百度知道]ssm和ssh各自的优势

    https://zhidao.baidu.com/question/875108451824176892.html SSM和SSH不同主要在MVC实现方式,以及ORM持久化方面不同(Hiibernat ...

  2. linux项目运行环境搭建

    # 命令查看可修改分辨率  xrandr # 选择要修改的分辨率  xrandr -s 1360x768# 删除文件命令  rm -rf 文件名/ # XShell工具进行远程连接了 sudo apt ...

  3. Kick Start 2019 Round D

    X or What? 符号约定: $\xor$ 表示异或. popcount($x$) 表示非负整数 $x$ 的二进制表示里数字 1 出现的次数.例如,$13 = 1101_2$,则 popcount ...

  4. C语言---程序的一般形式、数据类型、常量变量、运算符、表达式、格式化输入输出

    1. 程序的一般形式 (1)注释 ① 分类:单行注释( // ): 注释一行.多行注释( /**/ ): 在这个区间内,都属于多行注释,可以换行. ② 作用:提示代码的作用,提示思路   不写注释的后 ...

  5. linux下mysql的常用命令

    更改mysql数据库root的密码 首次进入数据库是不用密码的: [root@localhost ~]# /usr/local/mysql/bin/mysql -uroot Welcome to th ...

  6. Win7 MongoDB可视化工具Robo 3T 1.2.1(robomongo)的安装使用

    软件版本: Robo 3T 1.2.1 下载网址: https://robomongo.org/campaign 进入robomongo官网,点击download,进入下载页面 这里选择下载 Robo ...

  7. PHP之常用第三方库

    汇总常用的第三方库,方便快速进行开发,避免重复造轮子 1. 时间相关 nesbot/carbon(在编写 PHP 应用时经常需要处理日期和时间,使用Carbon 会很方便– 继承自 PHPDateTi ...

  8. IntelliJ IDEA 2017 提示“Unmapped Spring configuration files found.Please configure Spring facet.”解决办法

    当把自己的一个项目导入IDEA之后,Event Log提示“Unmapped Spring configuration files found.Please configure Spring face ...

  9. 经典Spring入门基础教程详解

    经典Spring入门基础教程详解 https://pan.baidu.com/s/1c016cI#list/path=%2Fsharelink2319398594-201713320584085%2F ...

  10. MATLAB仿真 让波形动起来

    dt=1e-6;T=2*1e-3;for N=0:500; t=N*T+(0:dt:T); input=2*cos(2*pi*1005*t); carrier=5*cos(2*pi*(1e4)*t+0 ...