相关概念

 基础类型

 在java中:  

byte  ->   8 bits  -->1字节
char -> 16 bit -->2字节
short -> 16 bits -->2字节
int -> 32 bits -->4字节
float -> 32 bits -->4字节
long -> 64 bits -->8字节

 位运算符

  在java中,int数据底层以补码形式存储。int型变量使用32bit存储数据,其中最高位是符号位,0表示正数,1表示负数,可通过Integer.toBinaryString()转换为bit字符串,

// 若最高的几位为0则不输出这几位,从为1的那一位开始输出
System.out.println(Integer.toBinaryString(10));
System.out.println(Integer.toBinaryString(-10));
// 会输出(手工排版过,以下的输出均会被手工排版):
1010
11111111111111111111111111110110

 左移<<

  例如:5 << 2 = 20

首先会将5转为2进制表示形式: 0000 0000 0000 0000 0000 0000 0000 0101  

然后左移2位后,低位补0:    0000 0000 0000 0000 0000 0000 0001 0100
换算成10进制为20

 右移>>

  例如: 5 >> 2 = 1

还是先将5转为2进制表示形式: 0000 0000 0000 0000 0000 0000 0000 0101
然后右移2位,高位补0: 0000 0000 0000 0000 0000 0000 0000 0001
换算成十进制后是1

 无符号右移>>>

   5 >>> 3    

  我们知道在Java中int类型占32位,可以表示一个正数,也可以表示一个负数。正数换算成二进制后的最高位为0,负数的二进制最高为为1。对于2进制补码的加法运算,和平常的计算一样,而且符号位也参与运算,不过最后只保留32位

-5换算成二进制: 1111 1111 1111 1111 1111 1111 1111 1011
-5右移3位: 1111 1111 1111 1111 1111 1111 1111 1111 // (用1进行补位,结果为-1)
-5无符号右移3位: 0001 1111 1111 1111 1111 1111 1111 1111 // (用0进行补位,结果536870911 )

 位与&

  第一个操作数的的第n位于第二个操作数的第n位如果都是1,那么结果的第n为也为1,否则为0

5转换为二进制:0000 0000 0000 0000 0000 0000 0000 0101
3转换为二进制:0000 0000 0000 0000 0000 0000 0000 0011
------------------------------------------------------------
1转换为二进制:0000 0000 0000 0000 0000 0000 0000 0001

 位或|

  第一个操作数的的第n位于第二个操作数的第n位只要有一个为1则为1,否则为0

5转换为二进制:0000 0000 0000 0000 0000 0000 0000 0101
3转换为二进制:0000 0000 0000 0000 0000 0000 0000 0011
-------------------------------------------------------------------------------------
6转换为二进制:0000 0000 0000 0000 0000 0000 0000 0111

  对于移位运算,例如将x左移/右移n位,如果x是byte、short、char、int,n会先模32(即n=n%32),然后再进行移位操作。可以这样解释:int类型为32位,移动32位(或以上)没有意义。

  同理若x是long,n=n%64。

 左移和右移代替乘除

a=a*4;
b=b/4;

 可以改为

a=a<<2;
b=b>>2;

  说明:   除2 = 右移1位 乘2 = 左移1位   除4 = 右移2位 乘4 = 左移2位   除8 = 右移3位 乘8 = 左移3位   … …

  类比十进制中的满十进一,向左移动小数点后,数字就会缩小十倍,在二进制中满二进一,进行右移一次相当于缩小了2两倍,右移两位相当于缩小了4倍,右移三位相当于缩小了8倍。通常如果需要乘以或除以2的n次方,都可以用移位的方法代替。

  实际上,只要是乘以或除以一个整数,均可以用移位的方法得到结果如:

  a=a*9

  分析a9可以拆分成a(8+1)即a8+a1, 因此可以改为: a=(a<<3)+a

  a=a*7

  分析a7可以拆分成a(8-1)即a8-a1, 因此可以改为: a=(a<<3)-a

  关于除法读者可以类推, 此略。

  【注意】由于+/-运算符优先级比移位运算符高,所以在写公式时候一定要记得添加括号,不可以 a = a*12 等价于 a = a<<3 +a <<2; 要写成a = (a<<3)+(a <<2 )。

 与运算代替取余

31转换为二进制:011111,0,31
32转换为二进制:100010 与31取交集的结果是:10转换为十进制为2
31转换为二进制:100001 与31取交集的结果是:01转换为十进制为1
30转换为二进制:011110 与31取交集的结果是:11110转换为十进制为30
29转换为二进制:011101 与31取交集的结果是:11101转换为十进制为29
33转换为二进制:100001 与31取交集的结果是:1转换为十进制为1

  31转换为二进制后,低位值全部为1,高位全为0。所以和其进行与运算,高位和0与,结果是0,相当于将高位全部截取,截取后的结果肯定小于等于31,地位全部为1,与1与值为其本身,所以相当于对数进行了取余操作。

 进制转换

  • 0x开头表示16进制,例如:0x2表示:2,0x2f表示48
  • 0开头表示8进制,例如:02表示:2,010表示:8
Integer.toHexString(int i)   // 十进制转成十六进制
Integer.toOctalString(int i) // 十进制转成八进制
Integer.toBinaryString(int i)// 十进制转成二进制
Integer.valueOf(m,n).toString() // 把n进制的m转换为10进制

BitMap实现原理  

  在java中,一个int类型占32个比特,我们用一个int数组来表示时未new int[32],总计占用内存32*32bit,现假如我们用int字节码的每一位表示一个数字的话,那么32个数字只需要一个int类型所占内存空间大小就够了,这样在大数据量的情况下会节省很多内存。

 具体思路:

  1个int占4字节即4*8=32位,那么我们只需要申请一个int数组长度为 int tmp[1+N/32]即可存储完这些数据,其中N代表要进行查找的总数,tmp中的每个元素在内存在占32位可以对应表示十进制数0~31,所以可得到BitMap表:

    tmp[0]:可表示0~31

    tmp[1]:可表示32~63

    tmp[2]可表示64~95

    .......

  那么接下来就看看十进制数如何转换为对应的bit位:

  假设这40亿int数据为:6,3,8,32,36,......,那么具体的BitMap表示为:

  如何判断int数字在tmp数组的哪个下标,这个其实可以通过直接除以32取整数部分,例如:整数8除以32取整等于0,那么8就在tmp[0]上。另外,我们如何知道了8在tmp[0]中的32个位中的哪个位,这种情况直接mod上32就ok,又如整数8,在tmp[0]中的第8 mod上32等于8,那么整数8就在tmp[0]中的第八个bit位(从右边数起)。

BitMap源码

private long length;
private static int[] bitsMap;
private static final int[] BIT_VALUE = {0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020,
0x00000040, 0x00000080, 0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000,
0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000, 0x00800000,
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000}; public BitMap2(long length) {
this.length = length;
/**
* 根据长度算出,所需数组大小
* 当 length%32=0 时大小等于
* = length/32
* 当 length%32>0 时大小等于
* = length/32+l
*/
bitsMap = new int[(int) (length >> 5) + ((length & 31) > 0 ? 1 : 0)];
} /**
* @param n 要被设置的值为n
*/
public void setN(long n) {
if (n < 0 || n > length) {
throw new IllegalArgumentException("length value "+n+" is illegal!");
}
// 求出该n所在bitMap的下标,等价于"n/5"
int index = (int) n>>5;
// 求出该值的偏移量(求余),等价于"n%31"
int offset = (int) n & 31;
/**
* 等价于
* int bits = bitsMap[index];
* bitsMap[index]=bits| BIT_VALUE[offset];
* 例如,n=3时,设置byte第4个位置为1 (从0开始计数,bitsMap[0]可代表的数为:0~31,从左到右每一个bit位表示一位数)
* bitsMap[0]=00000000 00000000 00000000 00000000 | 00000000 00000000 00000000 00001000=00000000 00000000 00000000 00000000 00001000
* 即: bitsMap[0]= 0 | 0x00000008 = 3
*
* 例如,n=4时,设置byte第5个位置为1
* bitsMap[0]=00000000 00000000 00000000 00001000 | 00000000 00000000 00000000 00010000=00000000 00000000 00000000 00000000 00011000
* 即: bitsMap[0]=3 | 0x00000010 = 12
*/
bitsMap[index] |= BIT_VALUE[offset]; }
/**
* 获取值N是否存在
* @return 1:存在,0:不存在
*/
public int isExist(long n) {
if (n < 0 || n > length) {
throw new IllegalArgumentException("length value illegal!");
}
int index = (int) n>>5;
int offset = (int) n & 31;
int bits = (int) bitsMap[index];
// System.out.println("n="+n+",index="+index+",offset="+offset+",bits="+Integer.toBinaryString(bitsMap[index]));
return ((bits & BIT_VALUE[offset])) >>> offset;
}

BitMap应用

  1:看个小场景 > 在3亿个整数中找出不重复的整数,限制内存不足以容纳3亿个整数。

  对于这种场景我可以采用2-BitMap来解决,即为每个整数分配2bit,用不同的0、1组合来标识特殊意思,如00表示此整数没有出现过,01表示出现一次,11表示出现过多次,就可以找出重复的整数了,其需要的内存空间是正常BitMap的2倍,为:3亿*2/8/1024/1024=71.5MB。

  具体的过程如下:

  扫描着3亿个整数,组BitMap,先查看BitMap中的对应位置,如果00则变成01,是01则变成11,是11则保持不变,当将3亿个整数扫描完之后也就是说整个BitMap已经组装完毕。最后查看BitMap将对应位为11的整数输出即可。

  2:已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

  8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。 (可以理解为从0-99 999 999的数字,每个数字对应一个Bit位,所以只需要99M个Bit==1.2MBytes,这样,就用了小小的1.2M左右的内存表示了所有的8位数的电话)  

BitMap问题

  BitMap 的思想在面试的时候还是可以用来解决不少问题的,然后在很多系统中也都会用到,算是一种不错的解决问题的思路。

  但是 BitMap 也有一些局限,因此会有其它一些基于 BitMap 的算法出现来解决这些问题。

  • 数据碰撞。比如将字符串映射到 BitMap 的时候会有碰撞的问题,那就可以考虑用 Bloom Filter 来解决,Bloom Filter 使用多个 Hash 函数来减少冲突的概率。
  • 数据稀疏。又比如要存入(10,8887983,93452134)这三个数据,我们需要建立一个 99999999 长度的 BitMap ,但是实际上只存了3个数据,这时候就有很大的空间浪费,碰到这种问题的话,可以通过引入 Roaring BitMap 来解决。

 另一种方式分析BitMap

 一、问题引入  

  bitMap是位图,其实准确的来说,翻译成基于位的映射,举一个例子,有一个无序有界int数组{1,2,5,7},初步估计占用内存44=16字节,这倒是没什么奇怪的,但是假如有10亿个这样的数呢,10亿*4字节/(1024*1024*1024)=3.72G左右(1GB=1024MB 、1MB=1024KB 、1KB=1024B 、1B=8b)。如果这样的一个大的数据做查找和排序,那估计内存也崩溃了,有人说,这些数据可以不用一次性加载,那就是要存盘了,存盘必然消耗IO。我们提倡的是高性能,这个方案直接不考虑。
 二、问题分析

  如果用BitMap思想来解决的话,就好很多,解决方案如下:
  一个byte是占8个bit,如果每一个bit的值就是有或者没有,也就是二进制的0或者1,如果用bit的位置代表数组值有还是没有, 那么0代表该数值没有出现过,1代表该数组值出现过。不也能描述数据了吗?具体如下图:

                  bitMap结构.p

  是不是很神奇,那么现在假如10亿的数据所需的空间就是3.72G/32了吧,一个占用32bit的数据现在只占用了1bit,节省了不少的空间,排序就更不用说了,一切显得那么顺利。这样的数据之间没有关联性,要是读取的,你可以用多线程的方式去读取。时间复杂度方面也是O(Max/n),其中Max为byte[]数组的大小,n为线程大小。

 三、应用与代码
  如果BitMap仅仅是这个特点,我觉得还不是它的优雅的地方,接下来继续欣赏它的魅力所在。下面的计算思想其实就是针对bit的逻辑运算得到,类似这种逻辑运算的应用场景可以用于权限计算之中。

  再看代码之前,我们先搞清楚一个问题,一个数怎么快速定位它的索引号,也就是说搞清楚byte[index]的index是多少,position是哪一位。举个例子吧,例如add(14)。14已经超出byte[0]的映射范围,在byte[1]范围之类。那么怎么快速定位它的索引呢。如果找到它的索引号,又怎么定位它的位置呢。Index(N)代表N的索引号,Position(N)代表N的所在的位置号。
  Index(N) = N/8 = N >> 3;
  Position(N) = N%8 = N & 0x07;

 (1) add(int num)
  你要向bitmap里add数据该怎么办呢,不用担心,很简单,也很神奇。
  上面已经分析了,add的目的是为了将所在的位置从0变成1.其他位置不变.

                    add.png

代码:

public void add(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3; // num%8得到在byte[index]的位置
int position = num & 0x07; //将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。
bits[arrayIndex] |= 1 << position;
}

 (2) clear(int num)

  对1进行左移,然后取反,最后与byte[index]作与操作。

  实例代码:

public void clear(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3; // num%8得到在byte[index]的位置
int position = num & 0x07; //将1左移position后,那个位置自然就是1,然后对取反,再与当前值做&,即可清除当前的位置了.
bits[arrayIndex] &= ~(1 << position); }

 (3) contain(int num)

public boolean contain(int num){ // num/8得到byte[]的index
int arrayIndex = num >> 3; // num%8得到在byte[index]的位置
int position = num & 0x07; //将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可
return (bits[arrayIndex] & (1 << position)) !=0;
}

全部代码:

public class BitMap {
//保存数据的
private byte[] bits; //能够存储多少数据
private int capacity; public BitMap(int capacity){
this.capacity = capacity; //1bit能存储8个数据,那么capacity数据需要多少个bit呢,capacity/8+1,右移3位相当于除以8
bits = new byte[(capacity >>3 )+1];
} public void add(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3; // num%8得到在byte[index]的位置
int position = num & 0x07; //将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。
bits[arrayIndex] |= 1 << position;
} public boolean contain(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3; // num%8得到在byte[index]的位置
int position = num & 0x07; //将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可
return (bits[arrayIndex] & (1 << position)) !=0;
} public void clear(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3; // num%8得到在byte[index]的位置
int position = num & 0x07; //将1左移position后,那个位置自然就是1,然后对取反,再与当前值做&,即可清除当前的位置了.
bits[arrayIndex] &= ~(1 << position); } public static void main(String[] args) {
BitMap bitmap = new BitMap(100);
bitmap.add(7);
System.out.println("插入7成功"); boolean isexsit = bitmap.contain(7);
System.out.println("7是否存在:"+isexsit); bitmap.clear(7);
isexsit = bitmap.contain(7);
System.out.println("7是否存在:"+isexsit);
}
}

出处: https://my.oschina.net/freelili/blog/2885263

    http://www.cnblogs.com/wuhuangdi/p/4126752.html#3074215


BitMap的原理和实现的更多相关文章

  1. BitMap的原理以及运用

    位图(Bitmap),即位(Bit)的集合,是一种数据结构,可用于记录大量的0-1状态,在很多地方都会用到,比如Linux内核(如inode,磁盘块).Bloom Filter算法等,其优势是可以在一 ...

  2. bitmap位图原理和实现

    引子 首先通过一道题来理解什么是bitmap. 题目:我有40亿个整数,再给一个新的整数,我需要判断新的整数是否在40亿个整数中,你会怎么做? 分析: 假设一个int占4个字节(32位),40个亿个整 ...

  3. Android性能优化:谈话Bitmap内存管理和优化

    最近除了那些忙着项目开发的事情,目前正在准备我的论文.短的时间没有写博客,今晚难得想总结.只要有一点时间.因此,为了凑合用,行.唠叨罗嗦,直接进入正题. 从事Android自移动终端的发展,想必是常常 ...

  4. Android性能优化之Bitmap的内存优化

    1.BitmapFactory解析Bitmap的原理 BitmapFactory提供的解析Bitmap的静态工厂方法有以下五种: Bitmap decodeFile(...) Bitmap decod ...

  5. Android性能优化系列之Bitmap图片优化

    https://blog.csdn.net/u012124438/article/details/66087785 在Android开发过程中,Bitmap往往会给开发者带来一些困扰,因为对Bitma ...

  6. 大数据分析常用去重算法分析『Bitmap 篇』

    大数据分析常用去重算法分析『Bitmap 篇』  mp.weixin.qq.com 去重分析在企业日常分析中的使用频率非常高,如何在大数据场景下快速地进行去重分析一直是一大难点.在近期的 Apache ...

  7. BitMap算法知识笔记以及在大数据方向的使用

    概述 所谓的BitMap算法就是位图算法,简单说就是用一个bit位来标记某个元素所对应的value,而key即是该元素,由于BitMap使用了bit位来存储数据,因此可以大大节省存储空间,这是很常用的 ...

  8. Redis系列8:Bitmap实现亿万级数据计算

    Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...

  9. 深入浅出RxJava

    深入浅出RxJava(一:基础篇) 深入浅出RxJava(二:操作符) 深入浅出RxJava三--响应式的好处 深入浅出RxJava四-在Android中使用响应式编程 RxJava 到底是什么? 一 ...

随机推荐

  1. 前端框架之BootStrap的简单介绍

    Bootstrap补充 一.一个小知识点 1.截取长屏的操作 2.设置默认格式 3.md,sm, xs 4.空格和没有空格的选择器 二.响应式介绍 - 响应式布局是什么? 同一个网页在不同的终端上呈现 ...

  2. 1.Linux命令行快捷键、Vim

    1. 命令终端的快捷键使用 ctrl+b 左移光标 ctrl+f 右移光标 ctrl+u 删除光标左边的内容 ctrl+k 删除光标右边的内容 ctrl+w 删除光标前的一个单词 =esc+ctrl+ ...

  3. python数据探索与数据与清洗概述

    数据探索的核心: 1.数据质量分析(跟数据清洗密切联系,缺失值.异常值等) 2.数据特征分析(分布.对比.周期性.相关性.常见统计量等) 数据清洗的步骤: 1.缺失值处理(通过describe与len ...

  4. spring boot不要放在tomcat下启动,因为自身就带了集成tomcat

    spring boot不要放在tomcat下启动,因为自身就带了集成tomcat

  5. #431 Div2 Problem B Tell Your World (鸽巢原理 && 思维)

    链接 : http://codeforces.com/contest/849/problem/B 题意 : 给出 n 个在直角坐标系上的点,每个点的横坐标的值对应给出的顺序序数,比如 1 2 4 3 ...

  6. SpringBoot整合MongoDb(二)

    构建项目及配置 pom.xml <dependencies> <dependency> <groupId>org.springframework.boot</ ...

  7. 【转】解决ajax跨域问题的5种解决方案

    转自: https://blog.csdn.net/itcats_cn/article/details/82318092   什么是跨域问题?跨域问题来源于JavaScript的"同源策略& ...

  8. SpringBoot学习-第一章

    1.SpringBoot入门 开发环境:JDK1.8 开发工具:IDEA2017.3.1 1.简介: Spring Boot让我们的Spring应用变的更轻量化.比如:你可以仅仅依靠一个Java类来运 ...

  9. kibana的安装和监控

    1.1:kibana搭建 kibana只需要在一台机器安装即可 1):解压 tar -zxvf kibana-5.5.2-linux-x86_64.tar.gz -C /home/angel/serv ...

  10. LR之流程

    一.新建事务 如何估算一个业务流程呢?一个业务流程的持续时间:登录,预定机票等等的花费时间,通常是几个步骤构成的,所以在LR中需要标记事物,作为评测业务的时间. 1.打开Basic_Tutorial脚 ...