http://codeforces.com/problemset/problem/1249/E

E. By Elevator or Stairs?
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are planning to buy an apartment in a n

-floor building. The floors are numbered from 1 to n

from the bottom to the top. At first for each floor you want to know the minimum total time to reach it from the first (the bottom) floor.

Let:

  • ai

for all i from 1 to n−1 be the time required to go from the i-th floor to the (i+1)-th one (and from the (i+1)-th to the i

  • -th as well) using the stairs;
  • bi

for all i from 1 to n−1 be the time required to go from the i-th floor to the (i+1)-th one (and from the (i+1)-th to the i-th as well) using the elevator, also there is a value c

  • — time overhead for elevator usage (you need to wait for it, the elevator doors are too slow!).

In one move, you can go from the floor you are staying at x

to any floor y (x≠y

) in two different ways:

  • If you are using the stairs, just sum up the corresponding values of ai

. Formally, it will take ∑i=min(x,y)max(x,y)−1ai

  • time units.
  • If you are using the elevator, just sum up c

and the corresponding values of bi. Formally, it will take c+∑i=min(x,y)max(x,y)−1bi

  • time units.

You can perform as many moves as you want (possibly zero).

So your task is for each i

to determine the minimum total time it takes to reach the i-th floor from the 1

-st (bottom) floor.

Input

The first line of the input contains two integers n

and c (2≤n≤2⋅105,1≤c≤1000

) — the number of floors in the building and the time overhead for the elevator rides.

The second line of the input contains n−1

integers a1,a2,…,an−1 (1≤ai≤1000), where ai is the time required to go from the i-th floor to the (i+1)-th one (and from the (i+1)-th to the i

-th as well) using the stairs.

The third line of the input contains n−1

integers b1,b2,…,bn−1 (1≤bi≤1000), where bi is the time required to go from the i-th floor to the (i+1)-th one (and from the (i+1)-th to the i

-th as well) using the elevator.

Output

Print n

integers t1,t2,…,tn, where ti is the minimum total time to reach the i

-th floor from the first floor if you can perform as many moves as you want.

Examples
Input

Copy
10 2
7 6 18 6 16 18 1 17 17
6 9 3 10 9 1 10 1 5
Output

Copy
0 7 13 18 24 35 36 37 40 45
Input

Copy
10 1
3 2 3 1 3 3 1 4 1
1 2 3 4 4 1 2 1 3
Output

Copy
0 2 4 7 8 11 13 14 16 17

题意:有n楼,给你1到2,2到3....n-1到n楼的爬楼梯时间和坐电梯时间。从楼梯去坐电梯需要等电梯开门的时间c。问每一楼到一楼的最短时间。

解法:考虑四个转移状态:从楼梯到楼梯,从楼梯到电梯,从电梯到楼梯,从电梯到电梯。

//#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdio.h>
#include <queue>
#include <stack>;
#include <map>
#include <set>
#include <string.h>
#include <vector>
#define ME(x , y) memset(x , y , sizeof(x))
#define SF(n) scanf("%d" , &n)
#define rep(i , n) for(int i = 0 ; i < n ; i ++)
#define INF 0x3f3f3f3f
#define mod 998244353
#define PI acos(-1)
using namespace std;
typedef long long ll ;
ll a[] , b[];
ll dp[][]; int main()
{
ll n , c ;
while(~scanf("%lld%lld" , &n , &c))
{
for(int i = ; i <= n ; i++)
{
scanf("%lld" , &a[i]);
}
for(int i = ; i <= n ; i++)
{
scanf("%lld" , &b[i]);
}
memset(dp , INF , sizeof(dp));
dp[][] = c ;
dp[][] = ;
for(int i = ; i <= n ; i++)
{
dp[i][] = min(dp[i][] , dp[i-][]+a[i]);//电梯到楼梯
dp[i][] = min(dp[i][] , dp[i-][]+a[i]);//楼梯到楼梯
dp[i][] = min(dp[i][] , dp[i-][]+b[i]);//电梯到电梯
dp[i][] = min(dp[i][] , dp[i-][]+b[i]+c);//楼梯到电梯
} for(int i = ; i < n ; i++)
cout << min(dp[i][] , dp[i][]) << " " ;
cout << min(dp[n][] , dp[n][]) << endl ;
} return ;
}

dp(电梯与楼梯)的更多相关文章

  1. CodeForces - 1249E 楼梯和电梯

    题意:第一行输入n和c,表示有n层楼,电梯来到需要时间c 输入两行数,每行n-1个,表示从一楼到二楼,二楼到三楼.....n-1楼到n楼,a[ ] 走楼梯和 b[ ] 乘电梯花费的时间 思路:动态规划 ...

  2. CodeForces1249E-By Elevator or Stairs?-好理解自己想不出来的dp

    Input The first line of the input contains two integers nn and cc (2≤n≤2⋅105,1≤c≤10002≤n≤2⋅105,1≤c≤1 ...

  3. 兑换零钱-(dp)

    https://ac.nowcoder.com/acm/contest/910/B 本以为是组合数,没想到是dp求解,变成水题了,让我想起了第一次见到dp的爬楼梯,可以走一步和走两步,走40步,这里相 ...

  4. CodeForces round 967 div2 题解(A~E)

    本来准备比完赛就写题解的, 但是一拖拖了一星期, 唉 最后一题没搞懂怎么做,恳请大神指教 欢迎大家在评论区提问. A Mind the Gap 稳定版题面 https://cn.vjudge.net/ ...

  5. codeforces966 A

    这题主要就是考虑y1两侧的最近的电梯和楼梯 当时主要是考虑  如果电梯在y1和y2中间的话   那么直接做电梯就是最优解   如果在y2右边就用abs去算 然后发现其实只考虑 y1的左右两边的电梯和楼 ...

  6. leetcode算法总结

    算法思想 二分查找 贪心思想 双指针 排序 快速选择 堆排序 桶排序 搜索 BFS DFS Backtracking 分治 动态规划 分割整数 矩阵路径 斐波那契数列 最长递增子序列 最长公共子系列 ...

  7. 机器人自主移动的秘密,从SLAM技术说起(一)

    博客转载自:https://www.leiphone.com/news/201609/c35bn1M9kgVaCCef.html 雷锋网(公众号:雷锋网)按:本文作者SLAMTEC(思岚科技公号sla ...

  8. 2.8/4/6/8mm/12mm焦距的镜头分别能监控多大范围?

    2.8/4/6/8mm/12mm焦距的镜头分别能监控多大范围? 相关介绍 一.焦距和监控距离的关系 我司IPC镜头焦距有2.8/4mm/6mm/8mm等多种选择,可以满足室内外各种环境的拍摄需求.IP ...

  9. Leedcode算法专题训练(动态规划)

    递归和动态规划都是将原问题拆成多个子问题然后求解,他们之间最本质的区别是,动态规划保存了子问题的解,避免重复计算. 斐波那契数列 1. 爬楼梯 70. Climbing Stairs (Easy) L ...

随机推荐

  1. Flutter SDK安装(windows)

    Flutter集成了Dart,因此不需要单独安装dart-sdk.Flutter的SDK可以从官网下载:https://flutter.io/sdk-archive/#windows 在Flutter ...

  2. MySQL的运行模式及一些特性,引擎、事务、并发控制、优化总结

    一 MySQL总体架构 上图是<高性能MySQL>中对MySQL总体架构的描述,客户端对服务端的连接有很多条,有一个专门的处理组件,类似tomcat使用线程池处理请求.解析器负责解析sql ...

  3. SpringCloud学习系列-Eureka服务注册与发现(4)

    actuator与注册微服务信息完善 1.主机名称:服务名称修改 当前问题 含有主机名称 修改修改microservicecloud-provider-dept-8001 的yml文件 修改内容 eu ...

  4. layui问题之渲染数据表格时,只显示10条数据

    通过ajax请求的数据,console.log()有30条数据,实际上只显示10条, 原因是没有设置limit table.render({ elem: '#report-collection' , ...

  5. 第七周作业—N42-虚怀若谷

    一.简述OSI七层模型和TCP/IP五层模型 1. OSI七层模型 物理层:二进制传输,为启动.维护以及关闭物理链路定义了电气规范.机械规范.过程规范和功能规范:实际的最终信号的传输是通过物理层实现的 ...

  6. System.currentTimeMillis和System.nanoTime()

    ns(nanosecond):纳秒, 时间单位.一秒的10亿分之一,即等于10的负9次方秒.常用作 内存读写速度的单位.  1纳秒=0.000001 毫秒  1纳秒=0.00000 0001秒 jav ...

  7. 转载--C++的反思

    转载自http://blog.csdn.net/yapian8/article/details/46983319 最近两年 C++又有很多人出来追捧,并且追捧者充满了各种优越感,似乎不写 C++你就一 ...

  8. 在CentOS7中配置网络时常见的LSB加载失败问题

    前几天,为了给OpenNebula扩展新的主机节点,对CentOS7的网络进行了配置.本以为网络配置只需要简单修改ifcfg-eth0即可,但是在重启网络服务时却遇到了一个LSB加载失败的问题(Fai ...

  9. 170905-MyBatis中的关系映射

    ===关系映射=== 参考文档复习:1对1,1对多,多对多 1.映射(多)对一.(一)对一的关联关系 1).使用列的别名 ①.若不关联数据表,则可以得到关联对象的id属性 ②.若还希望得到关联对象的其 ...

  10. nodejs工作大全

    1.修改文件夹中图片的名称 var fs = require('fs');var fileDirectory = "F:\\zdw\\修改文件夹名称\\newFile";var n ...