评估操作对于测量神经网络的性能是有用的。 由于它们是不可微分的,所以它们通常只是被用在评估阶段

tf.nn.top_k(input, k, name=None)

这个函数的作用是返回 input 中每行最大的 k 个数,并且返回它们所在位置的索引。

输入参数:
input: 一个张量,数据类型必须是以下之一:float32、float64、int32、int64、uint8、int16、int8。数据维度是 batch_size 乘上 x 个类别。
k: 一个整型,必须 >= 1。在每行中,查找最大的 k 个值。
name: 为这个操作取个名字。
输出参数:
一个元组 Tensor ,数据元素是 (values, indices),具体如下:
values: 一个张量,数据类型和 input 相同。数据维度是 batch_size 乘上 k 个最大值。
indices: 一个张量,数据类型是 int32 。每个最大值在 input 中的索引位置。
---------------------
作者:Never-Giveup
来源:CSDN
原文:https://blog.csdn.net/qq_36653505/article/details/81105894
版权声明:本文为博主原创文章,转载请附上博文链接!

input = tf.constant(np.random.rand(3,4))
k = 2
output = tf.nn.top_k(input, k)
with tf.Session() as sess:
       print(sess.run(input))
       print(sess.run(output))

[[0.61950464 0.34474213 0.79035374 0.15015998]
[0.17963278 0.30331155 0.9208411 0.90382958]
[0.20007082 0.89997606 0.03721232 0.24253472]]
TopKV2(values=array([[0.79035374, 0.61950464],
[0.9208411 , 0.90382958],
[0.89997606, 0.24253472]]),
indices=array([[2, 0],
[2, 3],
[1, 3]], dtype=int32))

tf.nn.top_k的更多相关文章

  1. tf.nn.top_k(input, k, name=None)和tf.nn.in_top_k(predictions, targets, k, name=None)

    tf.nn.top_k(input, k, name=None) 这个函数的作用是返回 input 中每行最大的 k 个数,并且返回它们所在位置的索引. input: 一个张量,数据类型必须是以下之一 ...

  2. TF-卷积函数 tf.nn.conv2d 介绍

    转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...

  3. tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例

    tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...

  4. tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码

    这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...

  5. 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别

    1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...

  6. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  7. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

  8. 深度学习原理与框架- tf.nn.atrous_conv2d(空洞卷积) 问题:空洞卷积增加了卷积核的维度,为什么不直接使用7*7呢

    空洞卷积, 从图中可以看出,对于一个3*3的卷积,可以通过使用增加卷积的空洞的个数,来获得较大的感受眼, 从第一幅图中可以看出3*3的卷积,可以通过补零的方式,变成7*7的感受眼,这里补零的个数为1, ...

  9. 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?

    反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4.    ...

随机推荐

  1. 转载:String.format()的详细用法

    转载自:https://blog.csdn.net/anita9999/article/details/82346552 问题 在开发的时候一段字符串的中间某一部分是需要可变的 比如一个Textvie ...

  2. 图论——图的邻接表实现——Java语言(完整demo)

    1.图的简单实现方法——邻接矩阵 表示图的一种简单的方法是使用一个一维数组和一个二维数组,称为领接矩阵(adjacent matrix)表示法. 对于每条边(u,v),置A[u,v]等于true:否则 ...

  3. Xcode磁盘空间清理

    http://www.iwangke.me/2013/09/09/clean-xcode-to-free-up-disk-space/#jtss-tsina 这个目录下面的文件也可以隔一段儿时间清理一 ...

  4. UVALive 7325 Book Borders

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  5. 千万别在Java类的static块里写会抛异常的代码!

    public class Demo{ static{ // 模拟会抛异常的代码 throw new RuntimeException(); } } 如果你在Java类的static块里写这样会抛异常的 ...

  6. 十九、python内置函数汇总

    '''内置函数abs():取绝对值all():每个元素都为真,才是真any():有一个元素为真即为真bin():十进制转二进制hex():十进制转十六进制int():所有的转成十进制oct():十进制 ...

  7. Arrays.toList工具类

  8. nacos 使用 servlet 异步处理客户端配置长轮询

    config 客户端 ClientWorker#ClientWorker 构造方法中启动定时任务 ClientWorker.LongPollingRunnable 长轮询的任务,在 run 方法的结尾 ...

  9. QCOW2/RAW/qemu-img 概念浅析

    目录 目录 扩展阅读 RAW QCOW2 QEMU-COW 2 QCOW2 Header QCOW2 的 COW 特性 QCOW2 的快照 qemu-img 的基本使用 RAW 与 QCOW2 的区别 ...

  10. jmeter之分布式压测

    很多性能大牛说一台机器的压测其实不准确,于是搜索网上的分布式压测练习了一番 目录 1.环境准备 2.控制机和压测机配置 3.执行分布式压测 1.环境准备 1.1准备一台windows作为控制机(mas ...