Miller-Rabin素数检测

费马小定理:没人不会吧。

二次探测:如果\(n\)是质数,\(x^2 \equiv 1\ (\mod n)\)的解只有\(x \equiv 1\)或\(x \equiv n-1\ (\mod n)\)。

实现方法:

选取一些质数。\(n\)不超过\(3 \times 10^{18}\)的时候只需要\(2 \sim 23\),\(n\)在unsigned long long范围内时只需要\(2 \sim 37\)。对于每个质数:

  1. 使用费马小定理的逆否定理检测。

  2. 此时,我们有\(p^{n-1} \equiv 1\ (\mod n)\),如果不出意外\(n\)是质数的话,根据二次探测定理,\(p^{\frac{n-1}{2}},p^{\frac{n-1}{4}}...\)在模意义下都应该为\(1\),直到一次取到\(n-1\)时规律消失。

所以我们可以倒序处理,根据第一次出现\(n-1\)的位置进行探测。

代码

int mi[9]={2,3,5,7,11,13,17,19,23};

inline LL qmul(LL x,LL y,LL mod){
LL z=(long double)x/mod*y+0.5;
return ((x*y-z*mod)%mod+mod)%mod;
} inline LL qpow(LL x,LL y,LL mod){
LL ret=1,tt=x%mod;
while(y){
if(y&1)ret=qmul(ret,tt,mod);
tt=qmul(tt,tt,mod);
y>>=1;
}
return ret;
} inline bool miller_rabin(LL x){
if(x==1)return false;
rin(i,0,8)if(x==mi[i])return true;
rin(i,0,8)if(x%mi[i]==0)return false;
LL a=x-1;int b=0;
while(!(a&1))a>>=1,++b;
rin(i,0,8){
if(qpow(mi[i],x-1,x)!=1)return false;
LL now=qpow(mi[i],a,x);
if(now==1||now==x-1)continue;
rin(j,1,b-1){
now=qmul(now,now,x);
if(now==x-1)break;
if(j==b-1)return false;
}
}
return true;
}

低于线性复杂度的积性函数的前缀和处理方法

看这篇:杜教筛&min_25筛复习

NOI数论姿势瞎总结(Pi也没有)的更多相关文章

  1. Codeforces Round #326 (Div. 2) B Duff in Love 简单数论 姿势涨

    B. Duff in Love time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  2. 快速傅里叶变换与快速数论变换瞎学笔记$QwQ$

    $umm$先预警下想入门$FFT$就不要康我滴学习笔记了,,, 就,我学习笔记基本上是我大概$get$之后通过写$blog$加强理解加深记忆这样儿的,有些姿势点我可能会直接$skip$什么的,所以对除 ...

  3. [LNOI] 相逢是问候 || 扩展欧拉函数+线段树

    原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...

  4. BZOJ-1968 COMMON 约数研究 数论+奇怪的姿势

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1513 Solved: 1154 [Submit] ...

  5. 【NOI P模拟赛】华莱士CNHLS(容斥,数论分块)

    题意 出题人吃华 莱 士拉肚子了,心情不好,于是出了一道题面简单的难题. 共 T T T 组数据,对正整数 n n n 求 F ( n ) = ∑ i = 1 n μ 2 ( i ) i F(n)=\ ...

  6. 【BZOJ 2005】【NOI 2010】能量采集 数论+容斥原理

    这题设$f(i)$为$gcd(i,j)=x$的个数,根据容斥原理,我们只需减掉$f(i×2),f(i×3)\cdots$即可 那么这道题:$$ans=\sum_{i=1}^n(f(i)×((i-1)× ...

  7. UVA571Jugs题解--简单数论(其实是瞎搞)

    题目链接 https://cn.vjudge.net/problem/UVA-571 分析 刚做了道倒水问题的题想看看能不能水二倍经验,结果发现了这道题 题意翻译:https://www.cnblog ...

  8. 7.12 NOI模拟赛 积性函数求和 数论基础变换 莫比乌斯反演

    神题! 一眼powerful number 复习了一下+推半天. 可以发现G函数只能为\(\sum_{d}[d|x]d\) 不断的推 可以发现最后需要求很多块G函数的前缀和 发现只有\(\sqrt(n ...

  9. NOI 2019 省选模拟赛 T1【JZOJ6082】 染色问题(color) (多项式,数论优化)

    题面 一根长为 n 的无色纸条,每个位置依次编号为 1,2,3,-,n ,m 次操作,第 i 次操作把纸条的一段区间 [l,r] (l <= r , l,r ∈ {1,2,3,-,n})涂成颜色 ...

随机推荐

  1. 模板引擎StringTemplate和模板StringTemplateGroup的应用

    博主很懒什么都没有留下,只留下了一个转载链接!!! http://www.cnblogs.com/Jerry-Chou/archive/2012/12/12/2814693.html

  2. FFmpeg4.0笔记:采集桌面

    Github https://github.com/gongluck/FFmpeg4.0-study/tree/master/Cff // 采集桌面 void test_desktop() { boo ...

  3. 从入门到自闭之Python编码

    ascii码: 支持英文,数字,符号 1字节 不支持中文 gbk(国标) 支持英文,数字,符号 1字节 支持中文 2字节 unicode(万国码): 支持英文,数字,符号 4字节 支持欧洲 4字节 支 ...

  4. golang中格式化符号说明

    %v 值的默认格式表示 %+v 类似%v,但输出结构体时会添加字段名 %#v 值的Go语法表示 %T 值的类型的Go语法表示 %% 百分号 布尔值: %t 单词true或false 整数: %b 表示 ...

  5. TensorFlow入门——hello

    上一节说了TensorFlow的安装,这一节说一下测试的问题 新建一个Python文件,输入 import tensorflow as tf hello = tf .constant (’Hello, ...

  6. 多线程编程-- part 4 线程间的通信

    线程间的相互作用 线程之间需要一些协调通信,来共同完成一件任务. Object类相关的方法:notify(),notifyAll(),wait().会被所有的类继承,这些方法是final不能被重写.他 ...

  7. 微软商店(Microsoft store)删除之后恢复,一行代码搞定

    首先以管理员身份运行Windows PowerShell 地址C:\Users\Administrator\AppData\Roaming\Microsoft\Windows\Start Menu\P ...

  8. .Net Framework4.5中Asp.net mvc使用Singal R轮训实现导入进度条功能

    .Net Framework4.5中Asp.net mvc使用Singal R轮训实现导入进度条功能 我的项目需求是:在.net4.5中用mvc5实现上传xml文件,后台实时导入数据库时传到前台进度, ...

  9. 【vuex状态管理】使用步骤

    https://www.jianshu.com/p/33e5fb3f3a86 https://segmentfault.com/a/1190000015782272 写在前面: 1.创建一个store ...

  10. double to long

    obj to double obj to long instance of Bigdecimal public static void main(String[] args) throws Parse ...