BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)
题目链接
(Luogu) https://www.luogu.org/problem/P4727
(BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=1488
题解
Burnside引理经典题。
首先考虑一个\(O(n!\times poly(n))\)暴力: 枚举点的置换,然后计算在置换下保持不变的图的个数。
把置换拆成若干个轮换。
(1) 考虑轮换内部: 假设一轮换为\((a_1\ a_2\ ...\ a_n)\), 那么\((a_1,a_2),(a_2,a_3),...,(a_n,a_1)\)这些边要么都存在要么都不存在;\((a_1,a_3),(a_2,a_4),...,(a_{n-1},a_{1}),(a_{n},a_2)\)这些边也要么都存在要么都不存在;一般地说,对于任何一个\(d\), 所有的\((a_i,a_{(i+d)\mod n})\)这些边要么都存在要么都不存在,因此轮换内部一共有\(2^{\frac{n}{2}}\)种方案。
(2) 考虑轮换之间: 假设两轮换分别为\((a_1,a_2,...,a_n),(b_1,b_2,...,b_m)\)则有: \((a_1,b_1),(a_2,b_2),...(a_i,b_i)\)这些边存在情况都相同;\((a_1,b_2),(a_2,b_3),...,(a_i,b_{i+1})\)这些边存在情况都相同;以此类推,可以得到两轮换之间共有\(2^{\gcd(n,m)}\)种方案。
所有的置换方案数相加,最后除以置换总数\(n!\).
然后现在考虑\(n\le 60\)怎么办。
当\(n\le 60\)时,我们可以枚举拆分数(\(60\)的拆分数约为百万级别)。
已知一个拆分的方案(方案是指一个无标号序列\(a\)满足\(\sum a_i=n\),其长度为\(cnt\)),它对应了多少个不同排列的轮换分拆?
首先,长度为\(L\)的轮换共\((L-1)!\)种。
然后我们要处理标号问题。
假设轮换之间是有区别的,那么标号方案数为\(\frac{n!}{\prod^{cnt}_{i=1}a_i!}\).
但是长度相等的轮换之间没有区别,所以除以\(\prod {num_i!}\), 其中\(num_i\)表示\(i\)在\(a\)中的出现次数。
最后乘起来得到\(\frac{n!}{\prod^{cnt}_{i=1}a_i\prod^n_{i=1}num_i!}\)
累加即可。
时间复杂度?
枚举所有拆分方案,求\(cnt^2\)之和,我用程序计算得当\(n=60\)时该值约为\(2.7\times 10^8\).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 60;
const int P = 997;
llong fact[N+3],finv[N+3],inv[N+3];
llong pw2[N+3];
int a[N+3];
int num[N+3];
int gcd[N+3][N+3];
int n,cnt;
llong ans;
int GCD(int x,int y)
{
return y==0?x:GCD(y,x%y);
}
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong calc()
{
llong ret = fact[n];
for(int i=1; i<=cnt; i++)
{
ret = ret*inv[a[i]]%P;
}
for(int i=1; i<=n; i++)
{
ret = ret*finv[num[i]]%P;
}
for(int i=1; i<=cnt; i++)
{
ret = ret*pw2[a[i]>>1]%P;
}
for(int i=1; i<=cnt; i++)
{
for(int j=i+1; j<=cnt; j++)
{
ret = ret*pw2[gcd[a[i]][a[j]]]%P;
}
}
return ret;
}
void dfs(int sum)
{
if(sum==n)
{
ans = (ans+calc())%P;
return;
}
for(int i=a[cnt]; i+sum<=n; i++)
{
cnt++; a[cnt] = i; num[i]++;
dfs(i+sum);
a[cnt] = 0; cnt--; num[i]--;
}
}
int main()
{
pw2[0] = 1ll; for(int i=1; i<=N; i++) pw2[i] = (pw2[i-1]<<1)%P;
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
for(int i=1; i<=N; i++) inv[i] = finv[i]*fact[i-1]%P;
for(int i=1; i<=N; i++) for(int j=1; j<=N; j++) gcd[i][j] = GCD(i,j);
scanf("%d",&n);
if(n==0) {printf("1"); return 0;}
a[0] = 1; dfs(0);
ans = ans*finv[n]%P;
printf("%lld\n",ans);
return 0;
}
BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)的更多相关文章
- bzoj1488 [HNOI2009]图的同构 Burnside 引理
题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...
- [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...
- luogu P1446 [HNOI2008]Cards burnside引理 置换 不动点
LINK:Cards 不太会burnside引理 而这道题则是一个应用. 首先 一个非常舒服的地方是这道题给出了m个本质不同的置换 然后带上单位置换就是m+1个置换. burnside引理: 其中D( ...
- 【等价的穿越】Burnside引理&Pólya计数法
Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上 ...
- P4727 [HNOI2009]图的同构记数
传送门 如果我们把选出子图看成选出边,进而看成对边黑白染色,那么就是上一题的弱化版了,直接复制过来然后令\(m=2\)即可 不过直接交上去会T,于是加了几发大力优化 不知为何华丽的被小号抢了rank2 ...
- BZOJ 2287. [HZOI 2015]疯狂的机器人 [FFT 组合计数]
2287. [HZOI 2015]疯狂的机器人 题意:从原点出发,走n次,每次上下左右不动,只能在第一象限,最后回到原点方案数 这不煞笔提,组合数写出来发现卷积NTT,然后没考虑第一象限gg 其实就是 ...
- 【BZOJ 3027】 3027: [Ceoi2004]Sweet (容斥原理+组合计数)
3027: [Ceoi2004]Sweet Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 71 Solved: 34 Description John ...
- BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...
- 【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)
[BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对 ...
随机推荐
- python-day43(正式学习)
目录 复习 今日内容 字段操作 多表关系 外键 一对一:无级联关系 一对一:有级联关系 一对多 多对多 复习 """ 1.数据库的配置:my.ini [mysqld][m ...
- Zabbix-自带监控项与Kye
开启主机自动发现 ⦁选择配置 ->自动发现 ->创建自动发现->ip范围必须连续,不连续的话逗号分开 ⦁更新间隔 -> 2s ->更新 ⦁检查 -> 选择新的 -& ...
- MySQL性能优化(七):其它优化
原文:MySQL性能优化(七):其它优化 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/v ...
- private修饰的方法可以通过反射访问,那么private的意义是什么?
反射代码: package test; public class Person { private String userName= "Tom"; private void pla ...
- 第五篇 CSS入门 明白 三种嵌套形式,三种常用控制器
CSS入门 css是 层叠式样式表 css的作用是什么呢?举个抽象的例子啊,HTML是人,CSS则是衣服... css给html穿上衣服,有三种形式: 内嵌.内联.外联. 这三种形式,优先级为 ...
- Windows设置 .exe 开机自启动
例如:想让Nginx开机自启动 C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp
- vi编辑器中删除文件中所有字符
在命令模式下,将光标移动到文档最上方(使用gg命令),然后输入dG,删除工作区内所有缓存数据. 如果想要删除某行文档以下的内容,将光标移动到文档相应行,然后输入dG即可.
- MP4 ISO基础媒体文件格式术语
术语.定义和缩略术语 box 由唯一类型标识符和长度定义的面向对象的构造块(注:在一些标准称为“atom") chunk(块) 一个track连续采样集合 container box 唯一目 ...
- windows文本操作字符命令含义
r 打开只读文件,该文件必须存在. r+ 打开可读写的文件,该文件必须存在. rb+ 读写打开一个二进制文件,只允许读写数据. rt+ 读写打开一个文本文件,允许读和写. w 打开只写文件,若文件存在 ...
- Systemctl和service、chkconfig命令的关系
systemctl命令:是一个systemd工具,主要负责控制systemd系统和服务管理器. service命令:可以启动.停止.重新启动和关闭系统服务,还可以显示所有系统服务的当前状态. ch ...