日常吐(fei)嘈(hua)

这道题作为最近卡了我3天的dp题(最后还是在题解的帮助下冥思苦想才过掉的题),窝觉得此题肥肠之脑洞,写此博客纪念

题解

过河





先来日常手玩样例:



咦感觉怎么手玩答案都像是3的亚子???

吓得我打开了讨论组

我们发现题目没说一定要踩到石子上,所以类似0->2->4->7->10的走法也是可以的

手玩样例成功√

容易看出来这是个dp,因为走法无后效性。

那么我们思考dp式子。设\(dp[i]\)表示跳到距离原点\(i\)的地方,最少踩过的石子数。因为最终可以跳出\(L\),所以答案是\(min\{dp[i],i \in [L,L+t]\}\)。转移就是\(dp[i]=min\{dp[i-j] \}+是否有石子,j \in [s,t]\)

然后我们康康数据范围



噫,好,我炸了

显然空间是开不下的。就算用各种奇技淫巧把空间优化到开的下然后发现\(O(1e9)\)的\(dp\)它\(T\)了。

于是我们考虑用各种奇技淫巧来减小\(L\)

我们发现石子数量\(M\)相比于\(1e9\)来说小的可怜,只有100。这样一定会出现两个石子中间距离特别特别大的现象。而且\(s,t\)最大是10,显然对这些中间没有石子的区域进行dp是个很大的浪费。那么我们想办法把这些距离压缩掉。



我们来观察一下中间没有石子的区域的dp值是如何转移的。



其中\([s_i,t_i]\)是跳i步能达到的点。我们发现\(s_i=0+i\times s,t_i+i\times t\).而且发现当某个\(s_i=t_k\)时,就会产生有两个\([s_i,t_i]\)接起来辣!然后\(dp\)值也就会出现和前面相同,此时就可以压缩掉了,发现当上面的\(i=t,k=s\)时一定会出现这种局面,所以两个石子间的距离遇弱大于\(s\times t\),就可以把距离压缩成\(s\times t\)。

当然,对于\(s==t\)的情况是要特判的

因为\(s==t\),所以只能跳s的倍数,直接看s的倍数的地方有多少石子就可以了

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#include<ctime>
#include<cstdlib>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef __int128 i128;
const int inf=2147483647;
inline int read()
{
char ch=getchar();
int x=0;
bool f=0;
while(ch<'0'||ch>'9')
{
if(ch=='-') f=1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<3)+(x<<1)+(ch^48);
ch=getchar();
}
return f?-x:x;
}
int l,s,t,m,sz[109];
int dp[10000009];
int ys[10000009];
int main()
{
l=read();s=read();t=read();m=read();
for(int i=1;i<=m;i++)
sz[i]=read();
if(s==t)
{
int ans=0;
for(int i=1;i<=m;i++)
if(sz[i]%s==0) ans++;
printf("%d",ans);
return 0;
}
sort(sz+1,sz+1+m);//输入不一定按升序
int qwq=s*t;
int lst=0;
for(int i=1;i<=m;i++)//压缩距离
{
int qaq=sz[i]-lst;
lst=sz[i];
if(qaq>=qwq) qaq=qwq;
sz[i]=qaq+sz[i-1];
ys[sz[i]]=1;
}
int en=sz[m]+qwq;//考虑可以跳出l,所以最后距离要大一些
memset(dp,0x3f,sizeof(dp));
dp[0]=0;
for(int i=1;i<=en;i++)
{
for(int j=s;j<=t;j++)
if(i-j>=0) dp[i]=min(dp[i],dp[i-j]+ys[i]);//上面的dp式子
}
int ans=inf;
for(int i=sz[m];i<=en;i++)
ans=min(ans,dp[i]);
printf("%d",ans);
}

luoguP1502过河题解的更多相关文章

  1. P1052 过河 题解

    复习dp(迪皮)的时候刷到了一道简单路径压缩的题目(一点不会qwq) 题目描述链接. 正解: 首先呢,我们看到题目,自然而然的会想到这种思路: 设状态变量dp[i]表示从第一个格子开始经过一些跳跃跳到 ...

  2. 洛谷P1002 过河卒 题解 动态规划

    题目链接:https://www.luogu.com.cn/problem/P1002 题目大意 棋盘上\(A\)点有一个过河卒,需要走到目标\(B\)点.卒行走的规则:可以向下.或者向右.同时在棋盘 ...

  3. 【题解】p1809 过河问题

    原题传送门 题目分析 现有n个人在东岸,要过河去西岸.开始东岸有一艘船,船最多可承载2人,过河时间以耗时最长的人所需时间为准. 给定n个人的过河时间a,求所有人从东岸到西岸所需的最短时间. 当\(n= ...

  4. 【题解】洛谷P1002过河卒

    首先,一道入门DP 然而对于蒟蒻的我已经难到爆了好吗 第一点:动态转移方程 用DP的关键! 这题我们可以发现每一步的方案数由上面的那步加上左边的那步得到 所以自然而然的方程就出来了: f[i][k]= ...

  5. 题解 P1002 【过河卒】

    正文 简单描述一下题意: 士兵想要过河,他每一次可以往下走一格,也可以往右走一格,但马一步走到的地方是不能走的,问走到\(n\)行,\(m\)列有多少种走法 我们显然应该先根据马的位置将不能走的格子做 ...

  6. 【题解】洛谷P1052 [NOIP2005TG] 过河(DP+离散化)

    题目来源:洛谷P1052 思路 一开始觉得是贪心 但是仔细一想不对 是DP 再仔细一看数据不对 有点大 如果直接存下的话 显然会炸 那么就需要考虑离散化 因为一步最大跳10格 那么我们考虑从1到10都 ...

  7. 洛谷 P1809 过河问题 题解

    题面 这道题是一道贪心+DP的好题: 首先排序是一定要干的事情. 然后我们分情况处理: 1.如果剩一个人,让最小的回来接他 2.如果剩两个人,让最小的回来接,剩下的那两个人(即最大的两个人)过去,让次 ...

  8. 题解 P1052 【过河】

    显然是\(dp\),是用\(STL\)当中的\(map\)可以做到30分 #include <bits/stdc++.h>//万能头文件 using namespace std; int ...

  9. 题解:2018级算法第六次上机 C6-不Nan的过河

    题目描述: 样例: 实现解释: 一道因为没排序做了一个小时没做出来的二分答案模板题(手动呲牙) 知识点: 二分答案,最大值最小化 坑点: 排序,judge(mid)函数内计数的实现 其实从最长一步的最 ...

随机推荐

  1. jQuery 遍历 - 祖先

    通过 jQuery,您能够向上遍历 DOM 树,以查找元素的祖先. 向上遍历 DOM 树 这些 jQuery 方法很有用,它们用于向上遍历 DOM 树: parent() parents() pare ...

  2. Nginx如何配置https证书?

    #把80端口请求跳转到443端口 server { listen 80; server_name 域名; return 301 https://$http_host$request_uri; } se ...

  3. vue + mixin混入对象使用

    vue提供的混入对象mixin,类似于一个公共的组件,其他任何组件都可以使用它.我更经常的是把它当成一个公共方法来使用 在项目中有些多次使用的data数据,method方法,或者自定义的vue指令都可 ...

  4. mybatis-generator的功能扩展

    项目代码地址:https://github.com/whaiming/java-generator 我在原有的基础上扩展了和修改了一些功能: 1.增加获取sqlServer数据库字段注释功能 2.Ma ...

  5. Python两个内置函数locals 和globals

    这两个函数主要提供,基于字典的访问局部和全局变量的方式.在理解这两个函数时,首先来理解一下python中的名字空间概念.Python使用叫做名字空间的东西来记录变量的轨迹.名字空间只是一个字典,它的键 ...

  6. linux命令详解——yum

    1.如果不知道确切名字可以:rpm -qa|grep pkgname 2.查看软件安装的文件:rpm -qpl pkgname 3.如果不知道提供某个软件的包是叫什么,可以使用类似下面的写法: yum ...

  7. Linux驱动开发之字符设备驱动模型之file_operations

    90%的驱动模型都是按照下图开发的 下面来说下设备描述结构是什么东西 打开Linux-2.6.32.2的Source Insight 工程,搜索cdev 比如一个应用程序需要调用read和write这 ...

  8. springboot中使用servlet通过配置类

    在servlet目录下创建个servlet类,示例代码如下: package com.bjpowernode.springboot.servlet; import javax.servlet.Serv ...

  9. Vue自行封装常用组件-弹出框

    使用方法: 1.在父组件中引入"box.vue" //import popUpBox from "./box.vue";   2.在父组件中注册 popUpBo ...

  10. spring-data-neo4j 4.2.4release文档概要

    Neo4j是一种开源的NoSQL图数据库,将数据以图(把一个个实体当作节点,连接节点的边表示节点间的关系)的形式保存,Neo4j也支持ACID事务管理.关系型数据库数据访问采用的是ORM(对象关系映射 ...