AT2292 Division into Two
lINK
不妨认为\(A>B\)。
首先判一下无解。
设\(f_i\)表示\(A\)集合最后选第\(i\)个数的方案数。
转移的话枚举一下从哪个\(j\)转移过来。
显然\(j\)需要满足以下条件:
\(j<i\)
\(S_j<S_i-A\)
\(\forall a,b\in(j,i)\wedge a<b,S_a<S_b-B\)
不难发现\(j\)的取值范围是一个区间,前缀和优化即可。
#include<cstdio>
#include<cctype>
#define ll long long
ll read(){ll x=0;int c=getchar();while(!isdigit(c))c=getchar();while(isdigit(c))x=x*10+c-48,c=getchar();return x;}
const int N=100007,P=1000000007;
int inc(int a,int b){return a+=b,a>=P? a-P:a;}
int dec(int a,int b){return a-=b,a<0? a+P:a;}
int mul(int a,int b){return 1ll*a*b%P;}
ll a[N],f[N],sum[N];
int main()
{
ll n=read(),A=read(),B=read(),i,l,r,ans=0;
if(A<B) A^=B^=A^=B;
for(i=1;i<=n;++i) a[i]=read();
for(i=1;i+2<=n;++i) if(a[i+2]-a[i]<B) return puts("0"),0;
f[0]=sum[0]=1,a[n+1]=B+a[n];
for(i=1,l=r=0;i<=n;++i)
{
while(r<i&&a[i]-a[r+1]>=A) ++r;
if(l<=r) f[i]=inc(f[i],dec(sum[r],l?sum[l-1]:0));
sum[i]=inc(sum[i-1],f[i]);
if(i>1&&a[i]-a[i-1]<B) l=i-1;
}
for(i=n;~i;--i)
{
ans=inc(ans,f[i]);
if(a[i+1]-a[i]<B) break;
}
printf("%d",ans);
}
AT2292 Division into Two的更多相关文章
- $AT2292\ Division\ into\ Two$ $dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 不妨令$A\geq B$,于是先$sort$然后预处理判下如果有三个元素两两差都小于$B$的就直接$GG$了. 然后考虑对集合$X$进行$dp$,剩下的数 ...
- 「AT2292」Division into Two
传送门 Luogu 解题思路 考虑如何 \(\text{DP}\) 为了方便处理,我们设 \(A > B\) 设 \(dp[i]\) 表示处理完 \(1...i\) ,并且第 \(i\) 个数放 ...
- python from __future__ import division
1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...
- [LeetCode] Evaluate Division 求除法表达式的值
Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...
- 关于分工的思考 (Thoughts on Division of Labor)
Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...
- POJ 3140 Contestants Division 树形DP
Contestants Division Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...
- 暴力枚举 UVA 725 Division
题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...
- GDC2016【全境封锁(Tom Clancy's The Division)】对为何对应Eye Tracked System,以及各种优点的演讲报告
GDC2016[全境封锁(Tom Clancy's The Division)]对为何对应Eye Tracked System,以及各种优点的演讲报告 原文 4Gamer編集部:松本隆一 http:/ ...
- Leetcode: Evaluate Division
Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...
随机推荐
- CF G. Indie Album AC自动机+fail树+线段树
这个套路挺有意思的. 把 $trie$ 和 $fail$ 树都建出来,然后一起跑一跑就好了~ #include <queue> #include <cstdio> #inclu ...
- 窗体操作:CBrush类
CBrush画刷定义了一种位图形式的像素,利用它可对区域内部填充颜色. 该类封装了Windows的图形设备接口(GDI)刷子.通过该类构造的CBrush对象可以传递给任何一个需要画刷的CDC成员函数. ...
- 51 Nod 1089 最长回文子串(Manacher算法)
1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 回文串是指aba.abba.cccbccc.aaa ...
- 16位masm汇编实现筛法,状压求十万以内素数
.model small .data table byte 3,12500 dup (0);;0和1不是质数 i word 0 j word 0 .stack 4096 .code main proc ...
- Codeforces 482E ELCA (LCT)
题目链接 http://codeforces.com/contest/482/problem/E 题解 T2智商题T3大LCT题,我一个也不会= = CF的标算好像是分块?反正现在LCT都普及了就用L ...
- supsplk 服务器被植入木马 挖矿 cpu使用 700%
最近emr集群跑任务的时候总出现 task failed ,优化sql,调提交任务参数都没解决,最后再我排查时候,发现一个从节点的cpu使用800% 经过一些列排查,发现是被注入木马了, #被人种下的 ...
- 使用 SpringBoot+Dubbo 搭建一个简单分布式服务
实战之前,先来看几个重要的概念 开始实战之前,我们先来简单的了解一下这样几个概念:Dubbo.RPC.分布式.由于本文的目的是带大家使用SpringBoot+Dubbo 搭建一个简单的分布式服务,所以 ...
- C++入门经典-例3.21-goto语句实现循环
1:代码如下: // 3.21.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> usin ...
- R实现pm2.5地图数据展示
使用rvest包抓取pm2.5静态页面数据,使用leafletCN包实现pm2.5数据的地图展示,代码如下所示: library(rvest) library(leafletCN) Sys.setlo ...
- LDA(Latent Dirichlet Allocation)主题模型算法
原文 LDA整体流程 先定义一些字母的含义: 文档集合D,topic集合T D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词.(LDA里面 ...