lINK

不妨认为\(A>B\)。

首先判一下无解。

设\(f_i\)表示\(A\)集合最后选第\(i\)个数的方案数。

转移的话枚举一下从哪个\(j\)转移过来。

显然\(j\)需要满足以下条件:

\(j<i\)

\(S_j<S_i-A\)

\(\forall a,b\in(j,i)\wedge a<b,S_a<S_b-B\)

不难发现\(j\)的取值范围是一个区间,前缀和优化即可。

#include<cstdio>
#include<cctype>
#define ll long long
ll read(){ll x=0;int c=getchar();while(!isdigit(c))c=getchar();while(isdigit(c))x=x*10+c-48,c=getchar();return x;}
const int N=100007,P=1000000007;
int inc(int a,int b){return a+=b,a>=P? a-P:a;}
int dec(int a,int b){return a-=b,a<0? a+P:a;}
int mul(int a,int b){return 1ll*a*b%P;}
ll a[N],f[N],sum[N];
int main()
{
ll n=read(),A=read(),B=read(),i,l,r,ans=0;
if(A<B) A^=B^=A^=B;
for(i=1;i<=n;++i) a[i]=read();
for(i=1;i+2<=n;++i) if(a[i+2]-a[i]<B) return puts("0"),0;
f[0]=sum[0]=1,a[n+1]=B+a[n];
for(i=1,l=r=0;i<=n;++i)
{
while(r<i&&a[i]-a[r+1]>=A) ++r;
if(l<=r) f[i]=inc(f[i],dec(sum[r],l?sum[l-1]:0));
sum[i]=inc(sum[i-1],f[i]);
if(i>1&&a[i]-a[i-1]<B) l=i-1;
}
for(i=n;~i;--i)
{
ans=inc(ans,f[i]);
if(a[i+1]-a[i]<B) break;
}
printf("%d",ans);
}

AT2292 Division into Two的更多相关文章

  1. $AT2292\ Division\ into\ Two$ $dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 不妨令$A\geq B$,于是先$sort$然后预处理判下如果有三个元素两两差都小于$B$的就直接$GG$了. 然后考虑对集合$X$进行$dp$,剩下的数 ...

  2. 「AT2292」Division into Two

    传送门 Luogu 解题思路 考虑如何 \(\text{DP}\) 为了方便处理,我们设 \(A > B\) 设 \(dp[i]\) 表示处理完 \(1...i\) ,并且第 \(i\) 个数放 ...

  3. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  4. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  5. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

  6. POJ 3140 Contestants Division 树形DP

    Contestants Division   Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...

  7. 暴力枚举 UVA 725 Division

    题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...

  8. GDC2016【全境封锁(Tom Clancy's The Division)】对为何对应Eye Tracked System,以及各种优点的演讲报告

    GDC2016[全境封锁(Tom Clancy's The Division)]对为何对应Eye Tracked System,以及各种优点的演讲报告 原文 4Gamer編集部:松本隆一 http:/ ...

  9. Leetcode: Evaluate Division

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

随机推荐

  1. python 中字符串转 二进制 /ASCII码

  2. HDU 6071 Lazy Running (最短路)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6071 题解 又是一道虐信心的智商题... 首先有一个辅助问题,这道题转化了一波之后就会化成这个问题: ...

  3. x-admin

    https://blog.csdn.net/u014793102/article/details/80316335

  4. spring-sevlet简单配置

    <<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www ...

  5. hibernate一对多关联映射

    一对多关联映射 映射原理 一对多关联映射和多对一关联映射的映射原理是一致的,都是在多的一端加入一个外键,指向一的一端.关联关系都是由多端维护,只是在写映射时发生了变化. 多对一和一对多的区别 多对一和 ...

  6. SQL 表 数据备份

    insert into SMTTemporarySave select * from [MSV0CIMDB].[PICS_20170706].dbo.SMTTemporarySave

  7. Kotlin 的函数定义和使用 (译文 转)

    Kotlin 的函数定义和使用 函数声明Kotlin 中的函数使用 fun 关键字声明 fun double(x: Int): Int {}函数用法调用函数使用传统的方法 val result = d ...

  8. OpenCV学习笔记(8)——图像平滑

    使用不同的低筒滤波器对图像进行模糊 使用自定义的率弄起对图像进行卷积(2D卷积) 2D卷积 与信号一样,我们也可以对2D图像实施低通滤波,高通滤波等.LPF帮助我们去除噪声,模糊图像.而HPF帮助我们 ...

  9. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    1. 摘要 作者提出了一系列应用于移动和嵌入式视觉的称之为 MobileNets 的高效模型,这些模型采用深度可分离卷积来构建轻量级网络. 作者还引入了两个简单的全局超参数来有效地权衡时延和准确率,以 ...

  10. Solr之java实现增删查操作

    1.添加pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns=" ...