lINK

不妨认为\(A>B\)。

首先判一下无解。

设\(f_i\)表示\(A\)集合最后选第\(i\)个数的方案数。

转移的话枚举一下从哪个\(j\)转移过来。

显然\(j\)需要满足以下条件:

\(j<i\)

\(S_j<S_i-A\)

\(\forall a,b\in(j,i)\wedge a<b,S_a<S_b-B\)

不难发现\(j\)的取值范围是一个区间,前缀和优化即可。

#include<cstdio>
#include<cctype>
#define ll long long
ll read(){ll x=0;int c=getchar();while(!isdigit(c))c=getchar();while(isdigit(c))x=x*10+c-48,c=getchar();return x;}
const int N=100007,P=1000000007;
int inc(int a,int b){return a+=b,a>=P? a-P:a;}
int dec(int a,int b){return a-=b,a<0? a+P:a;}
int mul(int a,int b){return 1ll*a*b%P;}
ll a[N],f[N],sum[N];
int main()
{
ll n=read(),A=read(),B=read(),i,l,r,ans=0;
if(A<B) A^=B^=A^=B;
for(i=1;i<=n;++i) a[i]=read();
for(i=1;i+2<=n;++i) if(a[i+2]-a[i]<B) return puts("0"),0;
f[0]=sum[0]=1,a[n+1]=B+a[n];
for(i=1,l=r=0;i<=n;++i)
{
while(r<i&&a[i]-a[r+1]>=A) ++r;
if(l<=r) f[i]=inc(f[i],dec(sum[r],l?sum[l-1]:0));
sum[i]=inc(sum[i-1],f[i]);
if(i>1&&a[i]-a[i-1]<B) l=i-1;
}
for(i=n;~i;--i)
{
ans=inc(ans,f[i]);
if(a[i+1]-a[i]<B) break;
}
printf("%d",ans);
}

AT2292 Division into Two的更多相关文章

  1. $AT2292\ Division\ into\ Two$ $dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 不妨令$A\geq B$,于是先$sort$然后预处理判下如果有三个元素两两差都小于$B$的就直接$GG$了. 然后考虑对集合$X$进行$dp$,剩下的数 ...

  2. 「AT2292」Division into Two

    传送门 Luogu 解题思路 考虑如何 \(\text{DP}\) 为了方便处理,我们设 \(A > B\) 设 \(dp[i]\) 表示处理完 \(1...i\) ,并且第 \(i\) 个数放 ...

  3. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  4. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  5. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

  6. POJ 3140 Contestants Division 树形DP

    Contestants Division   Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...

  7. 暴力枚举 UVA 725 Division

    题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...

  8. GDC2016【全境封锁(Tom Clancy's The Division)】对为何对应Eye Tracked System,以及各种优点的演讲报告

    GDC2016[全境封锁(Tom Clancy's The Division)]对为何对应Eye Tracked System,以及各种优点的演讲报告 原文 4Gamer編集部:松本隆一 http:/ ...

  9. Leetcode: Evaluate Division

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

随机推荐

  1. CF G. Indie Album AC自动机+fail树+线段树

    这个套路挺有意思的. 把 $trie$ 和 $fail$ 树都建出来,然后一起跑一跑就好了~ #include <queue> #include <cstdio> #inclu ...

  2. 窗体操作:CBrush类

    CBrush画刷定义了一种位图形式的像素,利用它可对区域内部填充颜色. 该类封装了Windows的图形设备接口(GDI)刷子.通过该类构造的CBrush对象可以传递给任何一个需要画刷的CDC成员函数. ...

  3. 51 Nod 1089 最长回文子串(Manacher算法)

    1089 最长回文子串 V2(Manacher算法)  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 回文串是指aba.abba.cccbccc.aaa ...

  4. 16位masm汇编实现筛法,状压求十万以内素数

    .model small .data table byte 3,12500 dup (0);;0和1不是质数 i word 0 j word 0 .stack 4096 .code main proc ...

  5. Codeforces 482E ELCA (LCT)

    题目链接 http://codeforces.com/contest/482/problem/E 题解 T2智商题T3大LCT题,我一个也不会= = CF的标算好像是分块?反正现在LCT都普及了就用L ...

  6. supsplk 服务器被植入木马 挖矿 cpu使用 700%

    最近emr集群跑任务的时候总出现 task failed ,优化sql,调提交任务参数都没解决,最后再我排查时候,发现一个从节点的cpu使用800% 经过一些列排查,发现是被注入木马了, #被人种下的 ...

  7. 使用 SpringBoot+Dubbo 搭建一个简单分布式服务

    实战之前,先来看几个重要的概念 开始实战之前,我们先来简单的了解一下这样几个概念:Dubbo.RPC.分布式.由于本文的目的是带大家使用SpringBoot+Dubbo 搭建一个简单的分布式服务,所以 ...

  8. C++入门经典-例3.21-goto语句实现循环

    1:代码如下: // 3.21.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> usin ...

  9. R实现pm2.5地图数据展示

    使用rvest包抓取pm2.5静态页面数据,使用leafletCN包实现pm2.5数据的地图展示,代码如下所示: library(rvest) library(leafletCN) Sys.setlo ...

  10. LDA(Latent Dirichlet Allocation)主题模型算法

    原文 LDA整体流程 先定义一些字母的含义: 文档集合D,topic集合T D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词.(LDA里面 ...