The paper:

Hui Zou, Trevor Hastie, and Robert Tibshirani,

Sparse Principal Component Analysis,

Journal of computational and Graphical Statistics, 15(2): 265-286, 2006.

Reproduction of the Synthetic Example in Section 5.2 using R programming:

 library(elasticnet)

 ## sample version of SPCA
n =
v1 = rnorm(n,,sqrt())
v2 = rnorm(n,,sqrt())
v3 = -.*v1 + 0.925*v2 + rnorm(n)
x1 = v1 + rnorm(n)
x2 = v1 + rnorm(n)
x3 = v1 + rnorm(n)
x4 = v1 + rnorm(n) x5 = v2 + rnorm(n)
x6 = v2 + rnorm(n)
x7 = v2 + rnorm(n)
x8 = v2 + rnorm(n) x9 = v3 + rnorm(n)
x10 = v3 + rnorm(n) x = cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)
x.cov = t(x) %*% x/n; head(x.cov)
a = spca(x, , type='predictor', sparse='varnum', para=c(,), lambda=)
a
## population version of SPCA
g1 = matrix(, , )
diag(g1) = g2 = matrix(, , )
diag(g2) = g3 = matrix(283.7875, , )
diag(g3) = diag(g3)+ g1g3 = matrix(-, , )
g2g3 = matrix(277.5, , ) # construct the exact covariance matrix
x.cov = matrix(, , )
x.cov[:,:] = g1
x.cov[:,:] = g2
x.cov[:,:] = g3
x.cov[:,:] = g1g3
x.cov[:,:] = t(g1g3)
x.cov[:,:] = g2g3
x.cov[:,:] = t(g2g3) b = spca(x.cov, , type='Gram', sparse='varnum', para=c(,), lambda=)
b

The results of the population version using exact covariance matrix are exactly as in the paper:

> b

Call:
spca(x = x.cov, K = , para = c(, ), type = "Gram", sparse = "varnum",
lambda = ) sparse PCs
Pct. of exp. var. : 40.9 39.5
Num. of non-zero loadings :
Sparse loadings
PC1 PC2
[,] 0.0 0.5
[,] 0.0 0.5
[,] 0.0 0.5
[,] 0.0 0.5
[,] 0.5 0.0
[,] 0.5 0.0
[,] 0.5 0.0
[,] 0.5 0.0
[,] 0.0 0.0
[,] 0.0 0.0

But the sample version may randomly vary a little.

> a

Call:
spca(x = x, K = , para = c(, ), type = "predictor", sparse = "varnum",
lambda = ) sparse PCs
Pct. of exp. var. : 37.9 37.6
Num. of non-zero loadings :
Sparse loadings
PC1 PC2
x1 0.000 -0.303
x2 0.000 -0.533
x3 0.000 -0.576
x4 0.000 -0.540
x5 -0.492 0.000
x6 -0.287 0.000
x7 -0.481 0.000
x8 -0.666 0.000
x9 0.000 0.000
x10 0.000 0.000

Having fun learning sparse PCA!

Sparse PCA: reproduction of the synthetic example的更多相关文章

  1. Deflation Methods for Sparse PCA

    目录 背景 总括 Hotelling's deflation 公式 特点 Projection deflation 公式 特点 Schur complement deflation Orthogona ...

  2. Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms[贪婪算法选特征]

    目录 概括 Sparse PCA Formulation 非常普遍的问题 Optimality Conditions Eigenvalue Bounds 算法 代码 概括 这篇论文,不像以往的那些论文 ...

  3. Sparse PCA 稀疏主成分分析

    Sparse PCA 稀疏主成分分析 2016-12-06 16:58:38 qilin2016 阅读数 15677 文章标签: 统计学习算法 更多 分类专栏: Machine Learning   ...

  4. A direct formulation for sparse PCA using semidefinite programming

    目录 背景 Sparse eigenvectors(单个向量的稀疏化) 初始问题(low-rank的思想?) 等价问题 最小化\(\lambda\) 得到下列问题(易推) 再来一个等价问题 条件放松( ...

  5. 主成分分析(PCA)原理总结

    主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...

  6. Python机器学习笔记 使用scikit-learn工具进行PCA降维

    之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...

  7. 深入学习主成分分析(PCA)算法原理(Python实现)

    一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼 ...

  8. Sparse Principal Component Analysis

    目录 背景: 部分符号 创新点 文章梗概 The LASSO AND THE ELASTIC NET 将PCA改造为回归问题 定理二 单个向量(无需进行SVD版本) 定理三 多个向量(无需进行SVD, ...

  9. Full Regularization Path for Sparse Principal Component Analysis

    目录 背景 Notation Sparse PCA Semidefinite Relaxation Low Rank Optimization Sorting and Thresholding 背景 ...

随机推荐

  1. 在Keras中用Bert进行情感分析

    之前在BERT实战——基于Keras一文中介绍了两个库 keras_bert 和 bert4keras 但是由于 bert4keras 处于开发阶段,有些函数名称和位置等等发生了变化,那篇文章只用了 ...

  2. GCD and LCM HDU 4497 数论

    GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...

  3. 关于Python学习的一点说明

    关于Python学习的一点说明 我是用什么地方的资料来学习python的呢? 答案当然是鼎鼎大名的GitHub了. 5万多星推荐,100天让你从入门到精通,你值得拥有,点我进入查看

  4. Appscan工作原理详解

    AppScan,即 AppScan standard edition.其安装在 Windows 操作系统上,可以对网站等 Web 应用进行自动化的应用安全扫描和测试. Rational AppScan ...

  5. Spring之使用注解实例化Bean并注入属性

    1.准备工作 (1)导入jar包 除了上篇文章使用到的基本jar包外,还得加入aop的jar包,所有jar包如下 所需jar包 (2)配置xml <?xml version="1.0& ...

  6. 搜索(DFS)---能到达的太平洋和大西洋的区域

    能到达的太平洋和大西洋的区域 417. Pacific Atlantic Water Flow (Medium) Given the following 5x5 matrix: Pacific ~ ~ ...

  7. Python的五大数据类型的作用、定义方式、使用方法

    一.简述Python的五大数据类型的作用.定义方式.使用方法: 1. 数字类型int: 1.整形 作用:可以表示人的年龄,身份证号码,身高和体重等 定义方式:  weight = 130 print( ...

  8. ES6——generator

    generator 生成器函数 普通函数,一路到底 generator函数,中间可以停,到哪停呢,用 yield 配合,交出执行权 yield 有 放弃.退让.退位的意思 需要调用next()方法启动 ...

  9. Spark2.0基于广播变量broadcast实现实时数据按天统计

    package com.gm.hive.SparkHive; import java.text.SimpleDateFormat; import java.util.Arrays; import ja ...

  10. 异步json发送put或者delete

    第一种 put请求或者delete请求 直接写发送的情况 //批量删除 function batchDel() { var ids = []; $("#list-table").f ...