Sparse PCA: reproduction of the synthetic example
The paper:
Hui Zou, Trevor Hastie, and Robert Tibshirani,
Sparse Principal Component Analysis,
Journal of computational and Graphical Statistics, 15(2): 265-286, 2006.
Reproduction of the Synthetic Example in Section 5.2 using R programming:
library(elasticnet) ## sample version of SPCA
n =
v1 = rnorm(n,,sqrt())
v2 = rnorm(n,,sqrt())
v3 = -.*v1 + 0.925*v2 + rnorm(n)
x1 = v1 + rnorm(n)
x2 = v1 + rnorm(n)
x3 = v1 + rnorm(n)
x4 = v1 + rnorm(n) x5 = v2 + rnorm(n)
x6 = v2 + rnorm(n)
x7 = v2 + rnorm(n)
x8 = v2 + rnorm(n) x9 = v3 + rnorm(n)
x10 = v3 + rnorm(n) x = cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)
x.cov = t(x) %*% x/n; head(x.cov)
a = spca(x, , type='predictor', sparse='varnum', para=c(,), lambda=)
a
## population version of SPCA
g1 = matrix(, , )
diag(g1) = g2 = matrix(, , )
diag(g2) = g3 = matrix(283.7875, , )
diag(g3) = diag(g3)+ g1g3 = matrix(-, , )
g2g3 = matrix(277.5, , ) # construct the exact covariance matrix
x.cov = matrix(, , )
x.cov[:,:] = g1
x.cov[:,:] = g2
x.cov[:,:] = g3
x.cov[:,:] = g1g3
x.cov[:,:] = t(g1g3)
x.cov[:,:] = g2g3
x.cov[:,:] = t(g2g3) b = spca(x.cov, , type='Gram', sparse='varnum', para=c(,), lambda=)
b
The results of the population version using exact covariance matrix are exactly as in the paper:
> b Call:
spca(x = x.cov, K = , para = c(, ), type = "Gram", sparse = "varnum",
lambda = ) sparse PCs
Pct. of exp. var. : 40.9 39.5
Num. of non-zero loadings :
Sparse loadings
PC1 PC2
[,] 0.0 0.5
[,] 0.0 0.5
[,] 0.0 0.5
[,] 0.0 0.5
[,] 0.5 0.0
[,] 0.5 0.0
[,] 0.5 0.0
[,] 0.5 0.0
[,] 0.0 0.0
[,] 0.0 0.0
But the sample version may randomly vary a little.
> a Call:
spca(x = x, K = , para = c(, ), type = "predictor", sparse = "varnum",
lambda = ) sparse PCs
Pct. of exp. var. : 37.9 37.6
Num. of non-zero loadings :
Sparse loadings
PC1 PC2
x1 0.000 -0.303
x2 0.000 -0.533
x3 0.000 -0.576
x4 0.000 -0.540
x5 -0.492 0.000
x6 -0.287 0.000
x7 -0.481 0.000
x8 -0.666 0.000
x9 0.000 0.000
x10 0.000 0.000
Having fun learning sparse PCA!
Sparse PCA: reproduction of the synthetic example的更多相关文章
- Deflation Methods for Sparse PCA
目录 背景 总括 Hotelling's deflation 公式 特点 Projection deflation 公式 特点 Schur complement deflation Orthogona ...
- Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms[贪婪算法选特征]
目录 概括 Sparse PCA Formulation 非常普遍的问题 Optimality Conditions Eigenvalue Bounds 算法 代码 概括 这篇论文,不像以往的那些论文 ...
- Sparse PCA 稀疏主成分分析
Sparse PCA 稀疏主成分分析 2016-12-06 16:58:38 qilin2016 阅读数 15677 文章标签: 统计学习算法 更多 分类专栏: Machine Learning ...
- A direct formulation for sparse PCA using semidefinite programming
目录 背景 Sparse eigenvectors(单个向量的稀疏化) 初始问题(low-rank的思想?) 等价问题 最小化\(\lambda\) 得到下列问题(易推) 再来一个等价问题 条件放松( ...
- 主成分分析(PCA)原理总结
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...
- Python机器学习笔记 使用scikit-learn工具进行PCA降维
之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...
- 深入学习主成分分析(PCA)算法原理(Python实现)
一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼 ...
- Sparse Principal Component Analysis
目录 背景: 部分符号 创新点 文章梗概 The LASSO AND THE ELASTIC NET 将PCA改造为回归问题 定理二 单个向量(无需进行SVD版本) 定理三 多个向量(无需进行SVD, ...
- Full Regularization Path for Sparse Principal Component Analysis
目录 背景 Notation Sparse PCA Semidefinite Relaxation Low Rank Optimization Sorting and Thresholding 背景 ...
随机推荐
- 在Keras中用Bert进行情感分析
之前在BERT实战——基于Keras一文中介绍了两个库 keras_bert 和 bert4keras 但是由于 bert4keras 处于开发阶段,有些函数名称和位置等等发生了变化,那篇文章只用了 ...
- GCD and LCM HDU 4497 数论
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...
- 关于Python学习的一点说明
关于Python学习的一点说明 我是用什么地方的资料来学习python的呢? 答案当然是鼎鼎大名的GitHub了. 5万多星推荐,100天让你从入门到精通,你值得拥有,点我进入查看
- Appscan工作原理详解
AppScan,即 AppScan standard edition.其安装在 Windows 操作系统上,可以对网站等 Web 应用进行自动化的应用安全扫描和测试. Rational AppScan ...
- Spring之使用注解实例化Bean并注入属性
1.准备工作 (1)导入jar包 除了上篇文章使用到的基本jar包外,还得加入aop的jar包,所有jar包如下 所需jar包 (2)配置xml <?xml version="1.0& ...
- 搜索(DFS)---能到达的太平洋和大西洋的区域
能到达的太平洋和大西洋的区域 417. Pacific Atlantic Water Flow (Medium) Given the following 5x5 matrix: Pacific ~ ~ ...
- Python的五大数据类型的作用、定义方式、使用方法
一.简述Python的五大数据类型的作用.定义方式.使用方法: 1. 数字类型int: 1.整形 作用:可以表示人的年龄,身份证号码,身高和体重等 定义方式: weight = 130 print( ...
- ES6——generator
generator 生成器函数 普通函数,一路到底 generator函数,中间可以停,到哪停呢,用 yield 配合,交出执行权 yield 有 放弃.退让.退位的意思 需要调用next()方法启动 ...
- Spark2.0基于广播变量broadcast实现实时数据按天统计
package com.gm.hive.SparkHive; import java.text.SimpleDateFormat; import java.util.Arrays; import ja ...
- 异步json发送put或者delete
第一种 put请求或者delete请求 直接写发送的情况 //批量删除 function batchDel() { var ids = []; $("#list-table").f ...