boost graph
Boost Graph provides tools to work with graphs. Graphas are two-dimensional point clouds with any number of lines between ponts.
Vertices and Edges
1 adjacency_list
#include <boost/graph/adjacency_list.hpp>
#include <iostream> int main() {
boost::adjacency_list<> g; boost::adjacency_list<>::vertex_descriptor v1 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v2 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v3 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v4 = boost::add_vertex(g); std::cout << v1 << ", " << v2 << ", " << v3 << ", " << v4 << std::endl;
return ;
}
输出 0, 1, 2, 3
boost::adjacency_list is a template that is instantiated with default parameters. boost::add_vertex() adds a point to a graph. boost::add_vertex() returns an object of type boost::adjacency_list::vertex_descriptor. This object represents a newly added point in the graph.
std::vector is the container boost::adjacency_list uses by default to store points. In this case, boost::adjacency_list::vertex_descriptor is a type definition for std::size_t. Because other containers can be used to store points, boost::adjacency_list::vertex_descriptor isn't necessarily always std::size_t.
2. vertices()
#include <boost/graph/adjacency_list.hpp>
#include <utility>
#include <algorithm>
#include <iterator>
#include <iostream> int main() {
boost::adjacency_list<> g; boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g); std::pair<boost::adjacency_list<>::vertex_iterator, boost::adjacency_list<>::vertex_iterator> vs = boost::vertices(g); std::copy(vs.first, vs.second, std::ostream_iterator<boost::adjacency_list<>::vertex_descriptor>{std::cout, "\n"}); return ;
}
To get all points from a graph, call boost::vertices(). This function returns two iterators of type boost::adjacency_list::vertex_iterator, which refer to the beginning and ending points.
3. edges()
#include <boost/graph/adjacency_list.hpp>
#include <utility>
#include <algorithm>
#include <iterator>
#include <iostream> int main() {
boost::adjacency_list<> g; boost::adjacency_list<>::vertex_descriptor v1 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v2 = boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g); std::pair<boost::adjacency_list<>::edge_descriptor, bool> p = boost::add_edge(v1, v2, g);
std::cout.setf(std::ios::boolalpha);
std::cout << p.second << std::endl; p = boost::add_edge(v1, v2, g);
std::cout << p.second << std::endl; p = boost::add_edge(v2, v2, g);
std::cout << p.second << std::endl; std::pair<boost::adjacency_list<>::edge_iterator, boost::adjacency_list<>::edge_iterator> es = boost::edges(g); std::copy(es.first, es.second, std::ostream_iterator<boost::adjacency_list<>::edge_descriptor>{std::cout, "\n"}); return ;
}
输出:
true
true
true
(0,1)
(0,1)
(1,0)
You call boost::add_edge() to connect two points in a graph. You have to pass the points and the graph as parameters. boost::add_edge() returns a std::pair. first provides access to the line. second is a bool variable that indicates whether the line was successfully added.
boost::edges() provides access to all lines in a graph. boost::edges() returns two iterators that refer to the beginning and ending lines. lines start at the first point, one at the second. The direction of the lines depends on the order of the parameters passed to boost::add_edge().
As you see, you can have multiple lines between the same two points.
4. boost::adjacency_list with selectors
#include <boost/graph/adjacency_list.hpp>
#include <utility>
#include <algorithm>
#include <iterator>
#include <iostream> int main() {
typedef boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS> graph;
graph g; boost::adjacency_list<>::vertex_descriptor v1 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v2 = boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g); std::pair<boost::adjacency_list<>::edge_descriptor, bool> p = boost::add_edge(v1, v2, g);
std::cout.setf(std::ios::boolalpha);
std::cout << p.second << std::endl; p = boost::add_edge(v1, v2, g);
std::cout << p.second << std::endl; p = boost::add_edge(v2, v2, g);
std::cout << p.second << std::endl; std::pair<boost::adjacency_list<>::edge_iterator, boost::adjacency_list<>::edge_iterator> es = boost::edges(g); std::copy(es.first, es.second, std::ostream_iterator<boost::adjacency_list<>::edge_descriptor>{std::cout, "\n"}); return ;
}
By default, boost::adjacency_list uses std::vector for points and lines. By passing boost::setS as the first template parameter, std::set is selected as the container for lines.
The second template parameter tells boost::adjacency_list which class should be used for points.
The third template parameter determines whether lines are directed or undirected. The default is boost::directedS, which means all lines are directed and can be drawn as arrows. Lines can only be crossed in one direction.
Boost.Graph offers more selectors, including boost::listS, boost::mapS, and boost::hash_setS. boost::bidirectionalS can be used to make lines bidirectional.
5. creating indexes automatically with boost::add_edge()
#include <boost/graph/adjacency_list.hpp>
#include <tuple>
#include <algorithm>
#include <iterator>
#include <iostream> int main() {
typedef boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS> graph;
graph g; enum { topLeft, topRight, bottomRight, bottomLeft }; boost::add_edge(topLeft, topRight, g);
boost::add_edge(topRight, bottomRight, g);
boost::add_edge(bottomRight, bottomLeft, g);
boost::add_edge(bottomLeft, topLeft, g); graph::edge_iterator it, end;
std::tie(it, end) = boost::edges(g);
std::copy(it, end, std::ostream_iterator<graph::edge_descriptor>{std::cout, "\n"}); return ;
}
It is possible to define a graph without calling boost::add_vertex(). Boost.Graph adds missing points to a graph automatically if the points passed to boost::add_edge() don't exist.
Containers
except boost::adjacency_list, there are two other graph containers provided by Boost.Graph: boost::adjacency_matrix, boost::compressed_sparse_row_graph.
1. boost::adjacency_matrix
#include <boost/graph/adjacency_matrix.hpp>
#include <array>
#include <utility> int main() {
enum { topLeft, topRight, bottomRight, bottomLeft }; std::array<std::pair<int, int>, > edges{{
std::make_pair(topLeft, topRight);
std::make_pair(topRight, bottomRight);
std::make_pair(bottomRight, bottomLeft);
std::make_pair(bottomLeft, topLeft);
}}; typedef boost::adjacency_matrix<boost::undirectedS> graph;
graph g{edges.beign(), edges.end(), }; return ;
}
The two template parameters that pass selectors don't exist with boost::adjacency_matrix. With boost::adjacency_matrix, no selectors, such as boost::vecS and boost::setS, are used. boost::adjacency_matrix stores the graph in a matrix, and the internal structure is hardcoded. You can think of the matrix as a two-dimensional table: the table is a square with as many rows and columuns as the graph has points. The internal structure of boost::adjacency_matrix makes it possible to add and remove lines quickly. However, memory consumption is highter. The rule of thumb is to use boost::adjacency_list when there are relatively few lines compared to points. The more lines there are, the more it makes sense to use boost::adjacency_matrix.
2. boost::compressed_sparse_row_graph
#include <boost/graph/adjacency_matrix.hpp>
#include <array>
#include <utility> int main() {
enum { topLeft, topRight, bottomRight, bottomLeft }; std::array<std::pair<int, int>, > edges{{
std::make_pair(topLeft, topRight);
std::make_pair(topRight, bottomRight);
std::make_pair(bottomRight, bottomLeft);
std::make_pair(bottomLeft, topLeft);
}}; typedef boost::compressed_sparse_row_graph<boost::bidirectionalS> graph;
graph g{boost::edges_are_unsorted_multi_pass, edges.beign(), edges.end(), }; return ;
}
boost::compressed_sparse_row_graph can't be changed with. Once the graph has been created, points and lines can't be added or removed. Thus, boost::compressed_sparse_rwo_graph makes only sense when using an immutable graph. only supports directed lines and is low memory consumption.
boost graph的更多相关文章
- 【转】使用Boost Graph library(二)
原文转自:http://shanzhizi.blog.51cto.com/5066308/942972 让我们从一个新的图的开始,定义一些属性,然后加入一些带属性的顶点和边.我们将给出所有的代码,这样 ...
- 【转】使用Boost Graph library(一)
转自:http://shanzhizi.blog.51cto.com/5066308/942970 本文是一篇译文,来自:http://blog.csdn.net/jjqtony/article/de ...
- Boost Graph Library使用学习
Boost Graph Library,BGL 使用学习 探索 Boost Graph Library https://www.ibm.com/developerworks/cn/aix/librar ...
- Boost Graph Library materials
Needed to compute max flow in a project and found the official document of BGL to be rather obscure, ...
- boost库之graph入门
#include <boost/graph/undirected_graph.hpp> #include <boost/graph/adjacency_list.hpp> us ...
- 转债---Pregel: A System for Large-Scale Graph Processing(译)
转载:http://duanple.blog.163.com/blog/static/70971767201281610126277/ 作者:Grzegorz Malewicz, Matthew ...
- 译:Boost Property Maps
传送门:Boost Graph Library 快速入门 原文:Boost Property Map 图的抽象数学性质与它们被用来解决具体问题之间的主要联系就是被附加在图的顶点和边上的属性(prope ...
- Pregel: A System for Large-Scale Graph Processing(译)
[说明:Pregel这篇是发表在2010年的SIGMOD上,Pregel这个名称是为了纪念欧拉,在他提出的格尼斯堡七桥问题中,那些桥所在的河就叫Pregel.最初是为了解决PageRank计算问题,由 ...
- Linux上安装使用boost入门指导
Data Mining Linux上安装使用boost入门指导 获得boost boost分布 只需要头文件的库 使用boost建立一个简单的程序 准备使用boost二进制文件库 把你的程序链接到bo ...
随机推荐
- ARP(Address Resolution Protocol)地址解析协议初识
ARP址解析协议是根据IP地址获取物理地址的一个TCP/IP协议.它工作在OSI七层模型的中第二层——数据链路层. 使用ARP地址解析协议,可根据网络层IP数据包包头中的IP地址信息解析出目标硬件地址 ...
- scrapy中的cookies参数详解
COOKIES_ENABLED 默认: True 是否启用cookiesmiddleware.如果关闭,cookies将不会发送给web server. COOKIES_DEBUG 默认: False ...
- Myeclipse优化配置
#utf8 (do not remove)#utf8 (do not remove)-startup../Common/plugins/org.eclipse.equinox.launcher_1.2 ...
- Oracle 一条sql插入多条数据
Oracle一次插入多条数据. 表结构: create table aa ( ID NUMBER(11) PRIMARY KEY, NAME VARCHAR2(20) ) 第一种方式: insert ...
- Nginx+Tomcat实现单IP、多域名、多站点的访问
最近帮朋友做了两个网站,预算很小很小.小到两个网站只能跑在一台512M内存的公网服务器上(tomcat+MySQL,由于内存太小了,只能把两个网站部署在同一个tomcat上),每个网站有自己的域名,初 ...
- CentOS7.4伪分布式搭建 hadoop+zookeeper+hbase+opentsdb
前言 由于hadoop和hbase都得想zookeeper注册,所以启动顺序为 zookeeper——>hadoop——>hbase,关闭顺序反之 一.前期准备 1.配置ip 进入文件编辑 ...
- Java IO(1)
IO这一部分内容还是比较多的,对于基础的枯燥但是又重要的内容还是将它记下来比较好. 关于File类 Ø File类直接继承与Object类,File类描述了文件本身的一些属性,File类用来获取或者处 ...
- no suitable HttpMessageConverter found for response type
在使用 RestTemplate 或者 Spring Cloud 的时候,经常会出现这个错误. 基本上出现的场景都是,我们要json,结果来了个 text/html. 两个原因: 第一个就是:服务器返 ...
- Quartz-第二篇 使用quartz框架定时推送邮件
1.定时推送邮件,也就是使用定时调度框架触发我们的发邮件动作,发邮件动作,请参考我的这篇随笔.
- kmp(暴力匹配)
http://poj.org/problem?id=3080 Blue Jeans Time Limit: 1000MS Memory Limit: 65536K Total Submission ...