ACM Computer Factory

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10940   Accepted: 4098   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion
 

一发AC。。。都在题解里了。

 /*
本题还是比较入门级别的水题吧,思路很好想,选出所有的源点和所有的汇点,还有所有的可行边(如果一台电脑能够接受上一台电脑输出之后的结果,就说明可以从他们之间建立一条边),
接着按照多源多汇和结点容量最大流建边,跑一波最大流就ok啦,还有就是记录路径和结点容量值,嘤嘤嘤。
如果需要打印路径和统计流量,就将图备份一次,并且在存图的时候存入边的起点就ok了,跑完最大流检查一遍哪些边被用过了就ok。
*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int maxn = + , maxm = * + , maxp = + , inf = 0x3f3f3f3f;
int p, n, ps[maxn << ][], pe[maxn << ][], q[maxn << ], s1[maxn << ], e1[maxn << ];
int sizes, sizet, tot, tot1, cnt, head[maxn << ], que[maxn << ], dep[maxn << ], cur[maxn << ], sta[maxn << ];
struct Edge {
int to, next, cap, flow, from;
} edge[maxm << ], edges[maxm << ];
struct node {
int u, v, w;
} ans[maxm << ]; void init() {
memset(head, -, sizeof head);
tot = tot1 = ;
sizes = sizet = cnt = ;
} void addedge(int u, int v, int w, int rw = ) {
edge[tot].to = v; edge[tot].cap = w; edge[tot].flow = ; edge[tot].from = u;
edge[tot].next = head[u]; head[u] = tot ++;
edge[tot].to = u; edge[tot].cap = rw; edge[tot].flow = ; edge[tot].from = v;
edge[tot].next = head[v]; head[v] = tot ++; edges[tot1].to = v; edges[tot1].cap = w; edges[tot1].flow = ; edges[tot1].from = u;
edges[tot1].next = head[u]; head[u] = tot1 ++;
edges[tot1].to = u; edges[tot1].cap = rw; edges[tot1].flow = ; edges[tot1].from = v;
edges[tot1].next = head[v]; head[v] = tot1 ++;
} bool bfs(int s, int t, int n) {
int front = , tail = ;
memset(dep, -, sizeof dep[] * (n + ));
dep[s] = ;
que[tail ++] = s;
while(front < tail) {
int u = que[front ++];
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].to;
if(edge[i].cap > edge[i].flow && dep[v] == -) {
dep[v] = dep[u] + ;
if(v == t) return true;
que[tail ++] = v;
}
}
}
return false;
} int dinic(int s,int t, int n) {
int maxflow = ;
while(bfs(s, t, n)) {
for(int i = ; i < n; i ++) cur[i] = head[i];
int u = s, tail = ;
while(cur[s] != -) {
if(u == t) {
int tp = inf;
for(int i = tail - ; i >= ; i --)
tp = min(tp, edge[sta[i]].cap - edge[sta[i]].flow);
maxflow += tp;
for(int i = tail - ; i >= ; i --) {
edge[sta[i]].flow += tp;
edge[sta[i] ^ ].flow -= tp;
if(edge[sta[i]].cap - edge[sta[i]].flow == ) tail = i;
}
u = edge[sta[tail] ^ ].to;
}
else if(cur[u] != - && edge[cur[u]].cap > edge[cur[u]].flow && dep[u] + == dep[edge[cur[u]].to]) {
sta[tail ++] = cur[u];
u = edge[cur[u]].to;
}
else {
while(u != s && cur[u] == -)
u = edge[sta[-- tail] ^ ].to;
cur[u] = edge[cur[u]].next;
}
}
}
return maxflow;
} int main() {
while(~scanf("%d %d", &p, &n)) {
init();
int s = * n + , t = s + ;
for(int i = ; i <= n; i ++) {
scanf("%d", &q[i]);//读入某一台机器的工作效率
for(int j = ; j <= p; j ++) scanf("%d", &ps[i][j]);//读入初始状态
for(int j = ; j <= p; j ++) scanf("%d", &pe[i][j]);//读入输出状态
}
bool flag = true;
for(int i = ; i <= n; i ++) {
for(int j = ; j <= n; j ++) {
if(i ^ j) {//如果i != j
flag = true;
for(int k = ; k <= p; k ++) {//判断机器j是否可以接受机器i加工之后的状态
if(pe[i][k] + ps[j][k] == ) {
flag = false;
break;
}
}
if(flag) addedge(i + n, j, inf);
}
}
flag = true;
for(int k = ; k <= p; k ++) {//判断机器i是否为源点
if(ps[i][k] % == ) {
flag = false;
break;
}
}
if(flag) s1[sizes ++] = i;
flag = true;
for(int k = ; k <= p; k ++) {//判断机器i是否为汇点
if(pe[i][k] == ) {
flag = false;
break;
}
}
if(flag) e1[sizet ++] = i;
}
for(int i = ; i < sizes; i ++) addedge(s, s1[i], inf);
for(int i = ; i < sizet; i ++) addedge(n + e1[i], t, inf);
for(int i = ; i <= n; i ++) addedge(i, n + i, q[i]);
int maxflow = dinic(s, t, * n + );
for(int i = ; i <= tot; i += ) {
if(edge[i].flow > && edge[i].from != s && edge[i].to != t && abs(edge[i].from - edge[i].to) != n) {
ans[++ cnt].u = edge[i].from > n ? edge[i].from - n: edge[i].from;
ans[cnt].v = edge[i].to > n ? edge[i].to - n : edge[i].to;
ans[cnt].w = edges[i].cap - edge[i].cap;
// ans[++ cnt] = (node){edge[i].from, edge[i].to, edge[i].flow};
ans[cnt].w = edge[i].flow;
}
}
if(maxflow == ) cnt = ;
printf("%d %d\n", maxflow, cnt);
for(int i = ; i <= cnt; i ++) {
printf("%d %d %d\n", ans[i].u, ans[i].v, ans[i].w);
}
}
return ;
}

poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)的更多相关文章

  1. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  2. POJ 3436 ACM Computer Factory 最大流,拆点 难度:1

    题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...

  3. poj 3436 ACM Computer Factory 最大流+记录路径

    题目 题意: 每一个机器有一个物品最大工作数量,还有一个对什么物品进行加工,加工后的物品是什么样.给你无限多个初始都是000....的机器,你需要找出来经过这些机器操作后最多有多少成功的机器(111. ...

  4. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  5. POJ - 3436 ACM Computer Factory 网络流

    POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...

  6. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  7. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  8. POJ 3436 ACM Computer Factory (拆点+输出解)

    [题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...

  9. POJ 3436 ACM Computer Factory

    题意:   为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...

随机推荐

  1. Git回滚到指定的commit

    查看历史commint $ git log (可以记下sha码) 回退命令: $ git reset --hard HEAD^ 回退到上个版本$ git reset --hard HEAD~3 回退到 ...

  2. 0-4评价一个语言模型Evaluating Language Models:Perplexity

    有了一个语言模型,就要判断这个模型的好坏. 现在假设: 我们有一些测试数据,test data.测试数据中有m个句子;s1,s2,s3-,sm 我们可以查看在某个模型下面的概率: 我们也知道,如果计算 ...

  3. 6398. 【NOIP2018模拟10.30】Generator(树状数组区间修改)

    题目描述 Description Input Output 输出 q 行,第 i 行表示数据 Di 的答案. Sample Input 4 3 2 1 1 2 4 2 1 2 1 1 3 5 2 2 ...

  4. SecureCRT上传、下载文件 使用rz【上传】& sz【下载】命令

    首先安装:apt-get install lrzsz SecureCRT这款SSH客户端软件同时具备了终端仿真器和文件传输功能.比ftp命令方便多了,而且服务器不用再开FTP服务了.rz,sz是便是L ...

  5. React-Native 之 GD (十二)海淘半小时热门 及 获取最新数据个数功能 (角标)

    1.海淘半小时热门   基本功能和首页相似 GDHt.js /** * 海淘折扣 */ import React, { Component } from 'react'; import { Style ...

  6. Linux 下wdcp支持两种安装方式

    wdcp支持两种安装方式1 源码编译 此安装比较麻烦和耗时,一般是20分钟至一个小时不等,具体视机器配置情况而定2 RPM包安装 简单快速,下载快的话,几分钟就可以完成源码安装(ssh登录服务器,执行 ...

  7. mysqldump常用使用

    1:导出数据库sakila的表结构mysqldump -uroot -ppwd -d sakila > /data/tmp/sakila.sql; 2:导出数据库sakila下表employee ...

  8. 【SQL SERVER】 搭建AlwaysON高可用组

    项目需要保障数据的高可用,于是可选的方案无非是Oracle集群. 传统的主从+心跳切换访问点以及SQL Server AlwaysOn这类方案.(//经验不多,了解和实践过的方案就这类,轻拍) Ora ...

  9. 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第5节 String类_7_字符串的转换相关方法

    sequence n.顺序:次序:一系列:一连串 v.按顺序排列:测定(整套基因或分子成分的)序列 网络连续:数列:时序 butes.fori出循环 replace Ctrl+字母N也可以打开 输入s ...

  10. Linux 服务器安全优化

    最小的权限+最少的服务=最大的安全 所以,无论是配置任何服务器,我们都必须把不用的服务关闭.把系统权限设置到最小,这样才能保证服务器最大的安全.下面是CentOS服务器安全设置,供大家参考. 一.注释 ...