perf

相关命令:暂无相关命令
perf是Linux下的一款性能分析工具,能够进行函数级与指令级的热点查找。

Perf List
利用perf剖析程序性能时,需要指定当前测试的性能时间。性能事件是指在处理器或操作系统中发生的,可能影响到程序性能的硬件事件或软件事件
 

Perf top
实时显示系统/进程的性能统计信息 常用参数 -e:指定性能事件 -a:显示在所有CPU上的性能统计信息 -C:显示在指定CPU上的性能统计信息 -p:指定进程PID -t:指定线程TID -K:隐藏内核统计信息 -U:隐藏用户空间的统计信息 -s:指定待解析的符号信息 ‘‐G’ or‘‐‐call‐graph’ <output_type,min_percent,call_order> graph: 使用调用树,将每条调用路径进一步折叠。这种显示方式更加直观。 每条调用路径的采样率为绝对值。也就是该条路径占整个采样域的比率。 fractal 默认选项。类似与 graph,但是每条路径前的采样率为相对值。 flat 不折叠各条调用 选项 call_order 用以设定调用图谱的显示顺序,该选项有 2个取值,分别是 callee 与caller。 将该选项设为callee 时,perf按照被调用的顺序显示调用图谱,上层函数被下层函数所调用。 该选项被设为caller 时,按照调用顺序显示调用图谱,即上层函数调用了下层函数路径,也不显示每条调用路径的采样率

注: Perf top需要root权限


Perf stat
分析系统/进程的整体性能概况 task‐clock事件表示目标任务真正占用处理器的时间,单位是毫秒。也称任务执行时间 context-switches是系统发生上下文切换的次数 CPU-migrations是任务从一个处理器迁往另外一个处理器的次数 page-faults是内核发生缺页的次数 cycles是程序消耗的处理器周期数 instructions是指命令执行期间产生的处理器指令数 branches是指程序在执行期间遇到的分支指令数。 branch‐misses是预测错误的分支指令数。 XXX seconds time elapsed系程序持续时间 任务执行时间/任务持续时间大于1,那可以肯定是多核引起的 参数设置: -e:选择性能事件 -i:禁止子任务继承父任务的性能计数器。 -r:重复执行 n 次目标程序,并给出性能指标在n 次执行中的变化范围。 -n:仅输出目标程序的执行时间,而不开启任何性能计数器。 -a:指定全部cpu -C:指定某个cpu -A:将给出每个处理器上相应的信息。 -p:指定待分析的进程id -t:指定待分析的线程id

Perf record
记录一段时间内系统/进程的性能时间 参数:  -e:选择性能事件  -p:待分析进程的id  -t:待分析线程的id  -a:分析整个系统的性能  -C:只采集指定CPU数据  -c:事件的采样周期  -o:指定输出文件,默认为perf.data  -A:以append的方式写输出文件  -f:以OverWrite的方式写输出文件  -g:记录函数间的调用关系

Perf Report
读取perf record生成的数据文件,并显示分析数据 参数 -i:输入的数据文件 -v:显示每个符号的地址 -d <dos>:只显示指定dos的符号 -C:只显示指定comm的信息(Comm. 触发事件的进程名) -S:只考虑指定符号 -U:只显示已解析的符号 -g[type,min,order]:显示调用关系,具体等同于perf top命令中的-g -c:只显示指定cpu采样信息 -M:以指定汇编指令风格显示 –source:以汇编和source的形式进行显示 -p<regex>:用指定正则表达式过滤调用函数


 
例1
# perf top -e cycles:k     #显示内核和模块中,消耗最多CPU周期的函数

# perf top -e kmem:kmem_cache_alloc     #显示分配高速缓存最多的函数

# perf top

Samples: 1M of event 'cycles', Event count (approx.): 73891391490
5.44% perf [.] 0x0000000000023256
4.86% [kernel] [k] _spin_lock
2.43% [kernel] [k] _spin_lock_bh
2.29% [kernel] [k] _spin_lock_irqsave
1.77% [kernel] [k] __d_lookup
1.55% libc-2.12.so [.] __strcmp_sse42
1.43% nginx [.] ngx_vslprintf
1.37% [kernel] [k] tcp_poll
第一列:符号引发的性能事件的比例,默认指占用的cpu周期比例。
第二列:符号所在的DSO(Dynamic Shared Object),可以是应用程序、内核、动态链接库、模块。
第三列:DSO的类型。[.]表示此符号属于用户态的ELF文件,包括可执行文件与动态链接库)。[k]表述此符号属于内核或模块。
第四列:符号名。有些符号不能解析为函数名,只能用地址表示。


 
例2
# perf top -G         #得到调用关系图

# perf top -e cycles         #指定性能事件

# perf top -p 23015,32476         #查看这两个进程的cpu cycles使用情况

# perf top -s comm,pid,symbol         #显示调用symbol的进程名和进程号

# perf top --comms nginx,top         #仅显示属于指定进程的符号

# perf top --symbols kfree         #仅显示指定的符号


 
例3
#  perf stat ls 

 Performance counter stats for 'ls':

          0.653782 task-clock                #    0.691 CPUs utilized
0 context-switches # 0.000 K/sec
0 CPU-migrations # 0.000 K/sec
247 page-faults # 0.378 M/sec
1,625,426 cycles # 2.486 GHz
1,050,293 stalled-cycles-frontend # 64.62% frontend cycles idle
838,781 stalled-cycles-backend # 51.60% backend cycles idle
1,055,735 instructions # 0.65 insns per cycle
# 0.99 stalled cycles per insn
210,587 branches # 322.106 M/sec
10,809 branch-misses # 5.13% of all branches 0.000945883 seconds time elapsed 输出包括ls的执行时间,以及10个性能事件的统计。 task-clock:任务真正占用的处理器时间,单位为ms。CPUs utilized = task-clock / time elapsed,CPU的占用率。 context-switches:上下文的切换次数。 CPU-migrations:处理器迁移次数。Linux为了维持多个处理器的负载均衡,在特定条件下会将某个任务从一个CPU 迁移到另一个CPU。 page-faults:缺页异常的次数。当应用程序请求的页面尚未建立、请求的页面不在内存中,或者请求的页面虽然在内 存中,但物理地址和虚拟地址的映射关系尚未建立时,都会触发一次缺页异常。另外TLB不命中,页面访问权限不匹配 等情况也会触发缺页异常。 cycles:消耗的处理器周期数。如果把被ls使用的cpu cycles看成是一个处理器的,那么它的主频为2.486GHz。 可以用cycles / task-clock算出。 stalled-cycles-frontend:略过。 stalled-cycles-backend:略过。 instructions:执行了多少条指令。IPC为平均每个cpu cycle执行了多少条指令。 branches:遇到的分支指令数。branch-misses是预测错误的分支指令数。 # perf stat -r 10 ls > /dev/null #执行10次程序,给出标准偏差与期望的比值 # perf stat -v ls > /dev/null #显示更详细的信息 # perf stat -n ls > /dev/null #只显示任务执行时间,不显示性能计数器 # perf stat -a -A ls > /dev/null #单独给出每个CPU上的信息 # perf stat -e syscalls:sys_enter ls #ls命令执行了多少次系统调用


 
例4
#  perf record -p `pgrep -d ',' nginx`      #记录nginx进程的性能数据

#  perf record ls -g    #记录执行ls时的性能数据

# perf record -e syscalls:sys_enter ls      #记录执行ls时的系统调用,可以知道哪些系统调用最频繁


 
例5
#   perf lock record ls      #记录

#   perf lock report      #报告

                Name   acquired  contended total wait (ns)   max wait (ns)   min wait (ns) 

 &mm->page_table_...        382          0               0               0               0
&mm->page_table_... 72 0 0 0 0
&fs->lock 64 0 0 0 0
dcache_lock 62 0 0 0 0
vfsmount_lock 43 0 0 0 0
&newf->file_lock... 41 0 0 0 0 Name:内核锁的名字。
aquired:该锁被直接获得的次数,因为没有其它内核路径占用该锁,此时不用等待。
contended:该锁等待后获得的次数,此时被其它内核路径占用,需要等待。
total wait:为了获得该锁,总共的等待时间。
max wait:为了获得该锁,最大的等待时间。
min wait:为了获得该锁,最小的等待时间。


 
例6
#  perf kmem record ls      #记录

#  perf kmem stat --caller --alloc -l 20      #报告

------------------------------------------------------------------------------------------------------
Callsite | Total_alloc/Per | Total_req/Per | Hit | Ping-pong | Frag
------------------------------------------------------------------------------------------------------
perf_event_mmap+ec | 311296/8192 | 155952/4104 | 38 | 0 | 49.902%
proc_reg_open+41 | 64/64 | 40/40 | 1 | 0 | 37.500%
__kmalloc_node+4d | 1024/1024 | 664/664 | 1 | 0 | 35.156%
ext3_readdir+5bd | 64/64 | 48/48 | 1 | 0 | 25.000%
load_elf_binary+8ec | 512/512 | 392/392 | 1 | 0 | 23.438% Callsite:内核代码中调用kmalloc和kfree的地方。
Total_alloc/Per:总共分配的内存大小,平均每次分配的内存大小。
Total_req/Per:总共请求的内存大小,平均每次请求的内存大小。
Hit:调用的次数。
Ping-pong:kmalloc和kfree不被同一个CPU执行时的次数,这会导致cache效率降低。
Frag:碎片所占的百分比,碎片 = 分配的内存 - 请求的内存,这部分是浪费的。
有使用--alloc选项,还会看到Alloc Ptr,即所分配内存的地址。
 
例7
#  perf sched record sleep 10    

#  perf report latency --sort max    

 ---------------------------------------------------------------------------------------------------------------
Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |
---------------------------------------------------------------------------------------------------------------
events/10:61 | 0.655 ms | 10 | avg: 0.045 ms | max: 0.161 ms | max at: 9804.958730 s
sleep:11156 | 2.263 ms | 4 | avg: 0.052 ms | max: 0.118 ms | max at: 9804.865552 s
edac-poller:1125 | 0.598 ms | 10 | avg: 0.042 ms | max: 0.113 ms | max at: 9804.958698 s
events/2:53 | 0.676 ms | 10 | avg: 0.037 ms | max: 0.102 ms | max at: 9814.751605 s
perf:11155 | 2.109 ms | 1 | avg: 0.068 ms | max: 0.068 ms | max at: 9814.867918 s TASK:进程名和pid。
Runtime:实际的运行时间。
Switches:进程切换的次数。
Average delay:平均的调度延迟。
Maximum delay:最大的调度延迟。
Maximum delay at:最大调度延迟发生的时刻。
 
例8
#  perf probe --line schedule    #前面有行号的可以探测,没有行号的就不行了

#  perf report latency --sort max    #在schedule函数的12处增加一个探测点

参考资料:http://linux.51yip.com/search/perf

Linux perf命令详解及常用参数解析的更多相关文章

  1. linux awk命令详解

    linux awk命令详解 简介 awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分 ...

  2. 【初级】linux rm 命令详解及使用方法实战

    rm:删除命令 前言: windows中的删除命令大家都不陌生,linux中的删除命令和windows中有一个共同特点,那就是危险,前两篇linux mkdir 命令详解及使用方法实战[初级]中我们就 ...

  3. linux grep命令详解

    linux grep命令详解 简介 grep (global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来 ...

  4. 【转发】linux yum命令详解

    linux yum命令详解 yum(全 称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理, ...

  5. linux yum 命令 详解

    linux yum命令详解 yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能 ...

  6. linux zip 命令详解

    功能说明:压缩文件. 语 法:zip [-AcdDfFghjJKlLmoqrSTuvVwXyz$][-b <工作目录>][-ll][-n <字尾字符串>][-t <日期时 ...

  7. Linux find命令详解

    转自Linux find命令详解 一.find 命令格式 1.find命令的一般形式为: find pathname -options [-print -exec -ok ...] 2.find命令的 ...

  8. linux lsof命令详解

    linux lsof命令详解 简介 lsof(list open files)是一个列出当前系统打开文件的工具.在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访 ...

  9. linux tee 命令详解

    man tee: NAME tee - read from standard input and write to standard output and files SYNOPSIS tee [OP ...

随机推荐

  1. pt-online-schema-change 修改表结构

  2. deepin系统换软件下载源&商店卡死刷新空白问题解决

    deepin换源方法 1. deepin默认的软件下载源网速很慢,所以我们可以自己手动换软件下载源,方法如下: 1.1. 任意地方,右键选择在此打开终端,(快捷键:Ctrl+Alt+T),输入sudo ...

  3. 【案例分享】SpreadJS金融行业应用实践,开发基于Web Excel的指标补录平台

    SpreadJS作为一款基于 HTML5 的纯前端电子表格控件,以“高速低耗.高度类似Excel.可无限扩展”为产品特色,提供移动跨平台和浏览器支持,可同时满足 .NET.Java.App 等应用程序 ...

  4. 基于 Vue.js 2.0 酷炫自适应背景视频登录页面的设计『转』

    本文讲述如何实现拥有酷炫背景视频的登录页面,浏览器窗口随意拉伸,背景视频及前景登录组件均能完美适配,背景视频可始终铺满窗口,前景组件始终居中,视频的内容始终得到最大限度的保留,可以得到最好的视觉效果. ...

  5. AssertionError [ERR_ASSERTION]: Task function must be specified,gulp版本不一致

    报错信息: vue项目打包报错 > innovate-admin-vue@ build /home/soldier/SOLDIER/IDE_project/webStorm_project/in ...

  6. SpringMVC请求参数总结

    前提 在日常使用SpringMVC进行开发的时候,有可能遇到前端各种类型的请求参数,这里做一次相对全面的总结.SpringMVC中处理控制器参数的接口是HandlerMethodArgumentRes ...

  7. js设计模式--发布订阅模式

    前言 本系列文章主要根据<JavaScript设计模式与开发实践>整理而来,其中会加入了一些自己的思考.希望对大家有所帮助. 概念 发布-订阅模式又叫观察者模式,它定义对象间的一种一对多的 ...

  8. Mysql-Sqlalchemy-增删改查分组等操作

    #!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base ...

  9. 部署master节点组件

    部署master节点组件 master节点的组件有:kube-apiserver,kube-scheduler,kube-controller-manager 大致安装步骤如下: # mkdir -p ...

  10. 禁止ios10双指缩放

    document.addEventListener('gesturestart', function(event) { event.preventDefault(); });