You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour.

Let's call colour c dominating in the subtree of vertex v if there are no other colours that appear in the subtree of vertex v more times than colour c. So it's possible that two or more colours will be dominating in the subtree of some vertex.

The subtree of vertex v is the vertex v and all other vertices that contains vertex v in each path to the root.

For each vertex v find the sum of all dominating colours in the subtree of vertex v.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the number of vertices in the tree.

The second line contains n integers ci (1 ≤ ci ≤ n), ci — the colour of the i-th vertex.

Each of the next n - 1 lines contains two integers xj, yj (1 ≤ xj, yj ≤ n) — the edge of the tree. The first vertex is the root of the tree.

Output

Print n integers — the sums of dominating colours for each vertex.

Examples

Input

4

1 2 3 4

1 2

2 3

2 4

Output

10 9 3 4

Input

15

1 2 3 1 2 3 3 1 1 3 2 2 1 2 3

1 2

1 3

1 4

1 14

1 15

2 5

2 6

2 7

3 8

3 9

3 10

4 11

4 12

4 13

Output

6 5 4 3 2 3 3 1 1 3 2 2 1 2 3

题意:

给你一颗以1为根的树,每一个节点有一个颜色。

询问你对于从1到n每一个节点为根的子树中,颜色最多的是哪个颜色?如果有多个颜色数量一样多,答案应该是他们的sum和。

思路:

dsu on tree 的入门题,

我们知道如果直接暴力求对于每一个节点为根的子树话,时间复杂度是 n * n的,显然会tle,的

我们可以利用树的重儿子和轻儿子的性质来优化暴力,而理论的时间复杂度是 O(nlogn)

我们从树根开始dfs,对于每一个节点,我们先暴力处理他的轻儿子,维护出清儿子的答案,同时清空轻儿子的贡献。

而对于重儿子,我们同样暴力处理,但是不删除他的贡献,因为重儿子节点可以对它的父节点有贡献,即我们在算重儿子的父节点的答案时,就不需要去扫它的重儿子了,因为已经处理过了。

同时,树链剖分的知识我们可以知道,这样处理的话,对于每一个节点,如果他是重儿子,他只会被访问1次,如果是轻儿子,最多访问logn次。所以时间复杂度是 O(nl ogn )

推荐学习本知识点的博客:https://www.cnblogs.com/zwfymqz/p/9683124.html

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 100010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ int n;
std::vector<int> son[maxn];
int wson[maxn];
int SZ[maxn];
int a[maxn];
void dfs1(int x,int pre)
{
SZ[x]=1;
int maxson=-1;
for(auto y:son[x])
{
if(y!=pre)
{
dfs1(y,x);
SZ[x]+=SZ[y];
if(maxson<SZ[y])
{
maxson=SZ[y];
wson[x]=y;
}
}
}
}
ll ans[maxn];
ll sum;
int isson;
int m;
ll cnt[maxn];
void add(int x,int pre,int val)
{
cnt[a[x]]+=val;
if(cnt[a[x]]>m)
{
m=cnt[a[x]];
sum=a[x];
}else if(cnt[a[x]]==m)
{
sum+=a[x];
}
for(auto y:son[x])
{
if(y==pre||y==isson)
continue;
add(y,x,val);
}
}
void dfs2(int x,int pre,int op)
{
for(auto y:son[x])
{
if(y==pre||y==wson[x])
{
continue;
}
dfs2(y,x,0);
}
if(wson[x])
{
dfs2(wson[x],x,1);
isson=wson[x];
}
add(x,pre,1);
isson=0;
ans[x]=sum;
if(op==0)
{
add(x,pre,-1);
sum=0;
m=0;
}
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gg(n);
repd(i,1,n)
{
gg(a[i]);
}
int u,v;
repd(i,2,n)
{
gg(u);gg(v);
son[u].pb(v);
son[v].pb(u);
}
dfs1(1,0);
dfs2(1,0,0); repd(i,1,n)
{
printf("%lld ",ans[i] );
}
printf("\n"); return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Lomsat gelral CodeForces - 600E (树上启发式合并)的更多相关文章

  1. Codeforces - 600E 树上启发式合并

    题意:求每一个子树存在最多颜色的颜色代号和(可重复) 本题是离线统计操作,因此可以直接合并重儿子已达到\(O(nlogn)\)的复杂度 PS.不知道什么是启发式合并的可以这样感受一下:进行树链剖分,分 ...

  2. 【CF600E】Lomset gelral 题解(树上启发式合并)

    题目链接 题目大意:给出一颗含有$n$个结点的树,每个节点有一个颜色.求树中每个子树最多的颜色的编号和. ------------------------- 树上启发式合并(dsu on tree). ...

  3. Codeforces 600E - Lomsat gelral(树上启发式合并)

    600E - Lomsat gelral 题意 给出一颗以 1 为根的树,每个点有颜色,如果某个子树上某个颜色出现的次数最多,则认为它在这课子树有支配地位,一颗子树上,可能有多个有支配的地位的颜色,对 ...

  4. CF EDU - E. Lomsat gelral 树上启发式合并

    学习:http://codeforces.com/blog/entry/44351 E. Lomsat gelral 题意: 给定一个以1为根节点的树,每个节点都有一个颜色,问每个节点的子树中,颜色最 ...

  5. [Codeforces600E] Lomsat gelral(树上启发式合并)

    [Codeforces600E] Lomsat gelral(树上启发式合并) 题面 给出一棵N个点的树,求其所有子树内出现次数最多的颜色编号和.如果多种颜色出现次数相同,那么编号都要算进答案 N≤1 ...

  6. 【学习笔记/题解】树上启发式合并/CF600E Lomsat gelral

    题目戳我 \(\text{Solution:}\) 树上启发式合并,是对普通暴力的一种优化. 考虑本题,最暴力的做法显然是暴力统计每一次的子树,为了避免其他子树影响,每次统计完子树都需要清空其信息. ...

  7. Codeforces 208E - Blood Cousins(树上启发式合并)

    208E - Blood Cousins 题意 给出一棵家谱树,定义从 u 点向上走 k 步到达的节点为 u 的 k-ancestor.多次查询,给出 u k,问有多少个与 u 具有相同 k-ance ...

  8. 树上启发式合并(dsu on tree)学习笔记

    有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...

  9. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

随机推荐

  1. 惠州双月湾游记 & 攻略

    惠州双月湾游记&攻略 2019 年的 11 月底和小朱.Josie 约了快乐周末去惠州双月湾玩! 我和时猪一起从武汉出发到广州,然后和他们俩一起从广州自驾去的惠州.大致行程如下: Day 1: ...

  2. delphi 权限控制(delphi TActionList方案)

    在软件开发中,为软件加入权限控制功能,使不同的用户有不同的使用权限,是非常重要的一项功能,由其在开发数据库方面的应用,这项功能更为重要.但是,要为一个应用加入全面的权限控制功能,又怎样实现呢?大家知道 ...

  3. [转] Maven 从命令行获取项目的版本号

    [From]https://blog.soebes.de/blog/2018/06/09/help-plugin/ I bet you have been faced with the situati ...

  4. 【Linux】【三】linux 复制文件到指定目录

    将  application/file/test/logs/ 下的文件 logs.log , logs.tar 复制到  application/file/test/tools/ 下,并新建文件夹[l ...

  5. OnCustomDraw

    ON_NOTIFY_REFLECT(NM_CUSTOMDRAW, &CMyListCtrl::OnNMCustomdraw) ON_NOTIFY : Comes from a child co ...

  6. python基础知识(字符串)

    定义字符串 ' '单引号 " "双引号  只能用于单行 '" '"三引号  可以用于多行 拼接字符串使用  +号链接 字符串只能链接字符串其他类型字符串需要用s ...

  7. jmeter设置中文语言

    1.在jmeter的bin目录下找到  jmeter.properties  文件并打开 2.搜索关键字 “language”,将37行(以搜索到的位置为准)改成下图所示:language=zh_CN ...

  8. mariadb(第二章)增删改 MariaDB 数据类型

    MariaDB 数据类型 MariaDB数据类型可以分为数字,日期和时间以及字符串值. 使用数据类型的原则:够用就行, 尽量使用范围小的,而不用大的 常用的数据类型 整数:int, bit 小数:de ...

  9. 【Python开发】Python PIL ImageDraw 和ImageFont模块学习

    ImageDraw 新建一个空白图片为本文作示例,新建空白文件的方法 见Image模块,Image.new: mport Image   blank = Image.new("RGB&quo ...

  10. 同sql server不同database间的数据访问

    虽未经测试,但是应该是登陆名同时具有此2数据库访问权限啦. select * from [basename].dbo.[tablename] done.