[Code+#3]博弈论与概率统计
记得曾经和稳稳比谁后抄这个题的题解,看来是我输了
不难发现\(p\)是给着玩的,只需要求一个总情况数除以\(\binom{n+m}{n}\)就好了
记\(i\)为无效的失败次数,即\(\rm Alice\)在得分为\(0\)时的失败次数,那么最后的得分就是\(n-m+i\)
不妨将赢看成\(1\)输看成\(-1\),我们把输赢情况写成一个\(n+m\)的序列,记这个序列的最小前缀和为\(t\),那么无效失败次数就是\(|\min(0,t)|\),也就是当\(t<0\)的时候,得分应为\(n-m+|t|\)
证明的话,考虑一种构造方法,我们把对最小前缀和产生影响的\(t\)个\(-1\)拿出来,显然两个\(-1\)之间的数的和应为\(0\),和为\(0\)意思就是分数可能涨了涨但最后又扣成\(0\)了,于是在得分为\(0\)的时候失败的次数就是\(t\)次
之后套路的转化成一个平面上的问题,将\(-1\)视为向上走,\(1\)视为向右走,那么无效失败次数为\(i\)的方案数等价与在坐标系上从\((0,0)\)走到\((n,m)\)且经过至少一次\(y=x+i\)且不超过的方案数
简单容斥一下,求一下严格低于\(y=x+i+1\)的方案数减一下严格低于\(y=x+i\)的方案数就好了
对于一个不合法的方案,我们取第一次达到\(y=x+i\)之前的路径,并将这段路径沿\(y=x+i\)翻折,就得到了一条从\((-i,i)\)到\((n,m)\)的路径,不难发现这样的路径会经过至少一次\(y=x+i\),所以这样的路径和不合法的路径是一一对应的,显然这样的路径条数是\(\binom{n+m}{n+i}\)
于是严格低于\(y=x+i\)的路径条数就是\(\binom{n+m}{n}-\binom{n+m}{n+i}\),于是恰好经过经过至少一次\(y=x+i\)且不超过的方案数为\(\binom{n+m}{m}-\binom{n+m}{n+i+1}-\binom{n+m}{n}+\binom{n+m}{n+i}=\binom{n+m}{n+i}-\binom{n+m}{n+i+1}\)
对于\(n\geq m\)的情况,我们求得即为\(\sum_{i=0}^m(n-m+i)(\binom{n+m}{n+i}-\binom{n+m}{n+i+1})\)
简单划开就会发现求得其实是\((n-m)\binom{n+m}{m}+\sum_{i=0}^{m-1}\binom{n+m}{n+i}\)
多组询问求后面那个柿子好像还是一道题来着,直接大力莫队即可
[Code+#3]博弈论与概率统计的更多相关文章
- loj6300 「CodePlus 2018 3 月赛」博弈论与概率统计
link 题意: A和B玩游戏,每轮A赢的概率为p.现在有T组询问,已知A赢了n轮输了m轮,没有平局,赢一局A得分+1,输一局得分-1,问A得分期望值? $n+m,T\leq 2.5\times 10 ...
- bzoj 5283: [CodePlus 2018 3 月赛]博弈论与概率统计
Description 大家的好朋友小 L 来到了博弈的世界.Alice 和 Bob 在玩一个双人游戏.每一轮中,Alice 有 p 的概率胜利,1 -p 的概率失败,不会出现平局.双方初始时各有 0 ...
- [CodePlus 2018 3 月赛] 博弈论与概率统计
link 题意简述 小 $A$ 与小 $B$ 在玩游戏,已知小 $A$ 赢 $n$ 局,小 $B$ 赢 $m$ 局,没有平局情况,且赢加一分,输减一分,而若只有 $0$ 分仍输不扣分. 已知小 $A$ ...
- LOJ6300 BZOJ5283 [CodePlus 2018 3 月赛]博弈论与概率统计
一道好题!很久以前就想做了,咕到了现在,讲第二遍了才做. 首先我们观察到$p$是没有用的 因为赢的次数一定 那么每一种合法序列出现的概率均为$p^n*(1-p)^m$ 是均等的 我们可以不看它了 然后 ...
- LOJ6300 博弈论与概率统计 组合、莫队
传送门 如果在\(0\)以下之后仍然会减分,那么最后的结果一定是\(N-M\). 注意到如果在Alice分数为\(0\)时继续输,那么就相当于减少了一次输的次数.也就是说如果说在总的博弈过程中,Ali ...
- 程序员的数学 三册数学,概率统计、线性代数pdf
程序员的数学1 2012.pdf 2012版 程序员的数学2 概率统计 ,平冈和幸,(日)堀玄著 ,P4006 2015.pdf 2015版 程序员的数学3-线性代数 2016.pdf 2016版 如 ...
- 【NLP】暑假课作业3 - 词性标注(简单词频概率统计)
作业任务: 使用98年人民日报语料库进行词性标注训练及测试. 作业输入: 98年人民日报语料库(1998-01-105-带音.txt),用80%的数据作为训练集,20%的数据作为验证集. 运行环境: ...
- 概率统计(DP)
问题叙述性说明 生成n个月∈[a,b]随机整数.并且将它们输出到x概率. 输入格式 输入线跟四个整数n.a,b,x,用空格分隔. 输出格式 输出一行包括一个小数位和为x的概率.小数点后保留四位小数 例 ...
- python 特定份数的数据概率统计(原创)
使用numpy模块中的histogram函数模块 Histogram(a,bins=10,range=None,normed=False,weights=None)其中, a是保存待统计数据的数组, ...
随机推荐
- upc组队赛5 Hunter’s Apprentice 【判断多边形边界曲线顺逆时针】
Hunter's Apprentice 题目描述 When you were five years old, you watched in horror as a spiked devil murde ...
- git和svn的比较
当前的市场上主流的两种项目开发版本控制软件就是Git和SVN,那么这二者到底有什么区别呢? 在我们公司,其实两个都用,跟对个人体验,我觉得两者差不多,都是进行代码的版本管理. 我觉得1.由于我是实习生 ...
- Java SAX解析器
SAX(针对XML的简单API)是基于事件为XML文档的解析器.不像DOM解析器,SAX解析器创建没有解析树. SAX是一个流接口用于XML的,这意味着使用SAX应用接收事件通知有关XML文档被处理的 ...
- 在不打开excel的情况下用python执行excel
import win32com.client import time path = r'absolute dir' #比如填文件的绝对路径,比如d:/file/stock.xlsx xl = win3 ...
- python基础【第六篇】
list列表 基本结构 lst =[1,2,3,5,6] 为什么学列表? 列表能够存储比字符串更多的数据 列表能够存储各种数据类型 列表的注意点 列表是有序的 列表是可变的,支持索引,切片,步 切片后 ...
- ollvm 编译
ollvm 的编译相对 llvm 更简单, 1:下载ollvm代码,去 https://github.com/obfuscator-llvm/obfuscator/tree/llvm-4.0 下载,并 ...
- Python之在字符串中处理html和xml
需求:替换文本字符串中的 ‘<’ 或者 ‘>’ ,使用 html.escape() 函数 import html s="<div>你好<div>" ...
- 【datatable】正在加载中的信息提示
datatable插件 DataTables is a plug-in for the jQuery Javascript library. It is a highly flexible tool, ...
- Java的安全性如何理解
Java取消了强大但又危险的指针,而代之以引用.由于指针可进行移动运算,指针可随便指向一个内存区域,而不管这个区域是否可用,这样做是危险的,因为原来这个内存地址可能存储着重要数据或者是其他程序运行所占 ...
- iftop简单使用
在linux下想查看当前与主机通信的IP有哪些?流量多少?怎么办?使用iftop吧,小巧实用的小工具.在排查问题的时候能起到大作用. centos安装 yum install iftop 界面如下: ...