[转]Design Pattern Interview Questions - Part 2
- (I) what is Interpreter pattern?
- (B) Can you explain iterator pattern?
- (A) Can you explain mediator pattern?
- (I) Can you explain memento pattern?
- (B) Can you explain observer pattern?
Other Interview question PDF's
Introduction
Again i repeat do not think you get an architecture position by reading interview questions. But yes there should be some kind of reference which will help you quickly revise what are the definition. Just by reading these answers you get to a position where you are aware of the fundamentals. But if you have not really worked you will surely fail with scenario based questions. So use this as a quick revision rather than a shot cut.
In case your are completely new to design patterns or you really do not want to read this complete article do see our free design pattern Training and interview questions / answersvideos.
If you have not read my pervious section you can always read from below
- Part 1 Design pattern interview questions http://www.dotnetfunda.com/articles/article130.aspx
- Part 3 Design Pattern Interview Questions :- http://www.dotnetfunda.com/articles/article137.aspx
- Part 4 Design pattern Interview Questions :- http://www.dotnetfunda.com/articles/article139.aspx
Happy job hunting......
(I) what is Interpreter pattern?
Interpreter pattern allows us to interpret grammar in to code solutions. Ok, what does that mean?. Grammars are mapped to classes to arrive to a solution. For instance 7 – 2 can be mapped to ‘clsMinus’ class. In one line interpreter pattern gives us the solution of how to write an interpreter which can read a grammar and execute the same in the code. For instance below is a simple example where we can give the date format grammar and the interpreter will convert the same in to code solutions and give the desired output.

Figure: - Date Grammar
Let’s make an interpreter for date formats as shown in figure ‘Date Grammar’. Before we start lets understand the different components of interpreter pattern and then we will map the same to make the date grammar. Context contains the data and the logic part contains the logic which will convert the context to readable format.

Figure: - Context and Logic
Let’s understand what is the grammar in the date format is. To define any grammar we should first break grammar in small logical components. Figure ‘Grammar mapped to classes’ show how different components are identified and then mapped to classes which will have the logic to implement only that portion of the grammar. So we have broken the date format in to four components Month, Day, Year and the separator. For all these four components we will define separate classes which will contain the logic as shown in figure ‘Grammar mapped to classes’. So we will be creating different classes for the various components of the date format.

Figure: - Grammar mapped to classes
As said there are two classes one is the expression classes which contain logic and the other is the context class which contain data as shown in figure ‘Expression and Context classes’. We have defined all the expression parsing in different classes, all these classes inherit from common interface ‘ClsAbstractExpression’ with a method ‘Evaluate’. The ‘Evaluate’ method takes a context class which has the data; this method parses data according to the expression logic. For instance ‘ClsYearExpression’ replaces the ‘YYYY’ with the year value,’’ClsMonthExpression’ replaces the ‘MM’ with month and so on.

Figure :- Class diagram for interpreter

Figure: - Expression and Context classes
Now that we have separate expression parsing logic in different classes, let’s look at how the client will use the iterator logic. The client first passes the date grammar format to the context class. Depending on the date format we now start adding the expressions in a collection. So if we find a ‘DD” we add the ‘ClsDayExpression’, if we find ‘MM’ we add ‘ClsMonthExpression’ and so on. Finally we just loop and call the ‘Evaluate’ method. Once all the evaluate methods are called we display the output.

Figure: - Client Interpreter logic
Note :- You can find the code for interpreter in ‘Interpeter’ folder.
(B) Can you explain iterator pattern?
Iterator pattern allows sequential access of elements with out exposing the inside code. Let’s understand what it means. Let’s say you have a collection of records which you want to browse sequentially and also maintain the current place which recordset is browsed, then the answer is iterator pattern. It’s the most common and unknowingly used pattern. Whenever you use a ‘foreach’ (It allows us to loop through a collection sequentially) loop you are already using iterator pattern to some extent.
Figure: - Iterator business logic
In figure ‘Iterator business logic’ we have the ‘clsIterator’ class which has collection of customer classes. So we have defined an array list inside the ‘clsIterator’ class and a ‘FillObjects’ method which loads the array list with data. The customer collection array list is private and customer data can be looked up by using the index of the array list. So we have public function like ‘getByIndex’ ( which can look up using a particular index) , ‘Prev’ ( Gets the previous customer in the collection , ‘Next’ (Gets the next customer in the collection), ‘getFirst’ ( Gets the first customer in the collection ) and ‘getLast’ ( Gets the last customer in the collection).
So the client is exposed only these functions. These functions take care of accessing the collection sequentially and also it remembers which index is accessed.
Below figures ‘Client Iterator Logic’ shows how the ‘ObjIterator’ object which is created from class ‘clsIterator’ is used to display next, previous, last, first and customer by index.

Figure: - Client Iterator logic
Note :- You can get a sample C# code in the ‘Iterator’ folder of the CD provided with this book.
(A) Can you explain mediator pattern?
Many a times in projects communication between components are complex. Due to this the logic between the components becomes very complex. Mediator pattern helps the objects to communicate in a disassociated manner, which leads to minimizing complexity.

Figure: - Mediator sample example
Let’s consider the figure ‘Mediator sample example’ which depicts a true scenario of the need of mediator pattern. It’s a very user-friendly user interface. It has three typical scenarios.
Scenario 1:- When a user writes in the text box it should enable the add and the clear button. In case there is nothing in the text box it should disable the add and the clear button.

Figure: - Scenario 1
Scenario 2:- When the user clicks on the add button the data should get entered in the list box. Once the data is entered in the list box it should clear the text box and disable the add and clear button.

Figure: - Scenario 2
Scenario 3:- If the user click the clear button it should clear the name text box and disable the add and clear button.

Figure: - Scenario 3
Now looking at the above scenarios for the UI we can conclude how complex the interaction will be in between these UI’s. Below figure ‘Complex interactions between components’ depicts the logical complexity.

Figure: - Complex interactions between components
Ok now let me give you a nice picture as shown below ‘Simplifying using mediator’. Rather than components communicating directly with each other if they communicate to centralized component like mediator and then mediator takes care of sending those messages to other components, logic will be neat and clean.

Figure: - Simplifying using mediator
Now let’s look at how the code will look. We will be using C# but you can easily replicate the thought to JAVA or any other language of your choice. Below figure ‘Mediator class’ shows the complete code overview of what the mediator class will look like.
The first thing the mediator class does is takes the references of the classes which have the complex communication. So here we have exposed three overloaded methods by name ‘Register’. ‘Register’ method takes the text box object and the button objects. The interaction scenarios are centralized in ‘ClickAddButton’,’TextChange’ and ‘ClickClearButton’ methods. These methods will take care of the enable and disable of UI components according to scenarios.

Figure: - Mediator class
The client logic is pretty neat and cool now. In the constructor we first register all the components with complex interactions with the mediator. Now for every scenario we just call the mediator methods. In short when there is a text change we can the ‘TextChange’ method of the mediator, when the user clicks add we call the ‘ClickAddButton’ and for clear click we call the ‘ClickClearButton’.

Figure: - Mediator client logic
Note :- You can get the C# code for the above mediator example in the ‘mediator’ folder.
(I) Can you explain memento pattern?
Memento pattern is the way to capture objects internal state with out violating encapsulation. Memento pattern helps us to store a snapshot which can be reverted at any moment of time by the object. Let’s understand what it means in practical sense. Consider figure ‘Memento practical example’, it shows a customer screen. Let’s say if the user starts editing a customer record and he makes some changes. Later he feels that he has done something wrong and he wants to revert back to the original data. This is where memento comes in to play. It will help us store a copy of data and in case the user presses cancel the object restores to its original state.

Figure: - Memento practical example
Let’s try to complete the same example in C# for the customer UI which we had just gone through. Below is the customer class ‘clsCustomer’ which has the aggregated memento class ‘clsCustomerMemento’ which will hold the snapshot of the data. The memento class ‘clsCustomerMemento’ is the exact replica ( excluding methods ) of the customer class ‘clsCustomer’. When the customer class ‘clsCustomer’ gets initialized the memento class also gets initialized. When the customer class data is changed the memento class snapshot is not changed. The ‘Revert’ method sets back the memento data to the main class.

Figure: - Customer class for memento
The client code is pretty simple. We create the customer class. In case we have issues we click the cancel button which in turn calls the ‘revert’ method and reverts the changed data back to the memento snapshot data. Figure ‘Memento client code’ shows the same in a pictorial format.

Figure: - Memento client code
Note :- A sample code in C# for memento is available in the memento folder of the CD.
(B) Can you explain observer pattern?
Observer pattern helps us to communicate between parent class and its associated or dependent classes. There are two important concepts in observer pattern ‘Subject’ and ‘Observers’. The subject sends notifications while observers receive notifications if they are registered with the subject. Below figure ‘Subject and observers’ shows how the application (subject) sends notification to all observers (email, event log and SMS). You can map this example to publisher and subscriber model. The publisher is the application and subscribers are email, event log and sms.

Figure: - Subject and Observers
Let’s try to code the same example which we have defined in the previous section. First let’s have a look at the subscribers / notification classes. Figure ‘Subscriber classes’ shows the same in a pictorial format. So we have a common interface for all subscribers i.e. ‘INotification’ which has a ‘notify’ method. This interface ‘INotification’ is implemented by all concrete notification classes. All concrete notification classes define their own notification methodology. For the current scenario we have just displayed a print saying the particular notification is executed.

Figure: - Subscriber classes
As said previously there are two sections in an observer pattern one is the observer/subscriber which we have covered in the previous section and second is the publisher or the subject.
The publisher has a collection of arraylist which will have all subscribers added who are interested in receiving the notifications. Using ‘addNotification’ and ‘removeNotification’ we can add and remove the subscribers from the arraylist. ‘NotifyAll’ method loops through all the subscribers and send the notification.

Figure: - Publisher/Subject classes
Now that we have an idea about the publisher and subscriber classes lets code the client and see observer in action. Below is a code for observer client snippet. So first we create the object of the notifier which has collection of subscriber objects. We add all the subscribers who are needed to be notified in the collection.
Now if the customer code length is above 10 characters then tell notify all the subscribers about the same.

Figure: - Observer client code
Note :- You can get the C# code snippet for observer pattern from the CD in ‘Observer’ folder.
[转]Design Pattern Interview Questions - Part 2的更多相关文章
- [转]Design Pattern Interview Questions - Part 3
State, Stratergy, Visitor Adapter and fly weight design pattern from interview perspective. (I) Can ...
- [转]Design Pattern Interview Questions - Part 1
Factory, Abstract factory, prototype pattern (B) What are design patterns? (A) Can you explain facto ...
- [转]Design Pattern Interview Questions - Part 4
Bridge Pattern, Composite Pattern, Decorator Pattern, Facade Pattern, COR Pattern, Proxy Pattern, te ...
- 115 Java Interview Questions and Answers – The ULTIMATE List--reference
In this tutorial we will discuss about different types of questions that can be used in a Java inter ...
- What Great .NET Developers Ought To Know (More .NET Interview Questions)
A while back, I posted a list of ASP.NET Interview Questions. Conventional wisdom was split, with ab ...
- Top 25 Most Frequently Asked Interview Core Java Interview Questions And Answers
We are sharing 25 java interview questions , these questions are frequently asked by the recruiters. ...
- 69 Spring Interview Questions and Answers – The ULTIMATE List--reference
This is a summary of some of the most important questions concerning the Spring Framework, that you ...
- Verilog Tips and Interview Questions
Verilog Interiew Quetions Collection : What is the difference between $display and $monitor and $wr ...
- Popular HashMap and ConcurrentHashMap Interview Questions
http://howtodoinjava.com/core-java/collections/popular-hashmap-and-concurrenthashmap-interview-quest ...
随机推荐
- Building OpenCASCADE on Debian
Building OpenCASCADE on Debian eryar@163.com Abstract. When you are familiar with OpenCASCADE on Win ...
- WPF 浏览文件夹,获取其路径
public void GetPath(System.Windows.Controls.TextBox TB) { FolderBrowserDialog FBD = new FolderBrowse ...
- UML中的六大关系(转)
UML定义的关系主要有六种:依赖.继承.关联.实现.聚合和组合.这些类间关系的理解和使用是掌握和应用UML的关键,而也就是这几种关系,往往会让初学者迷惑.这里给出这六种主要UML关系的说明和类图描述, ...
- C语言 第三章 基础编程测试与练习
1.屏幕上输出:This is a C program 2.输入两个整数,求两个数的和,如下所示:请输入第1个数:5请输入第2个数:3 3加5的和是8 3.完成华氏温度与摄氏温度间的转换,如下所示:请 ...
- 【JUC】JUC线程池框架综述
一.前言 在分析完了JUC的锁和集合框架后,下面进入JUC线程池框架的分析,下面给出JUC线程池的总体框架,之后再逐一进行分析. 二.JUC线程池框架图 说明:从上图可知,JUC线程池框架中的其他接口 ...
- Sql Server函数全解(五)之系统函数
系统信息包括当前使用的数据库名称,主机名,系统错误消息以及用户名称等内容.使用SQL SERVER中的系统函数可以在需要的时候获取这些信息.下面介绍系统函数的作用和使用方法. 1.返回表中指定字段的 ...
- jQuery-1.9.1源码分析系列(十四) 一些jQuery工具
为了给下一章分析动画处理做准备,先来看一下一些工具.其中队列工具在动画处理中被经常使用. jQuery.fn. queue(([ queueName ] [, newQueue ]) || ([ qu ...
- UWP开发入门(二十二)——Storyboard和Animation
微博上有同学问我MyerSplash是如何实现那个很炫的图片点亮,然后移动到屏幕中央的效果.惭愧啊,我又不是作者哪里会知道.硬着头皮去GitHub拜读了高手的代码,自愧弗如,比我不知道高到哪里去了…… ...
- CSS技巧(一):清除浮动
什么是CSS清除浮动? 在非IE浏览器(如Firefox)下,当容器的高度为auto,且容器的内容中有浮动(float为left或right)的元素,在这种情况下,容器的高度不能自动伸长以适应内容的高 ...
- C#+JQuery+.Ashx+百度Echarts实现全国省市地图和饼状图动态数据图形报表的统计
在目前的一个项目中,需要用到报表表现数据,这些数据有多个维度,需要同时表现出来,同时可能会有大量数据呈现的需求,经过几轮挑选,最终选择了百度的echarts作为报表基础类库.echarts功能强大,界 ...